Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Mathematics for Deep Learning

You're reading from   Hands-On Mathematics for Deep Learning Build a solid mathematical foundation for training efficient deep neural networks

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781838647292
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jay Dawani Jay Dawani
Author Profile Icon Jay Dawani
Jay Dawani
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Essential Mathematics for Deep Learning
2. Linear Algebra FREE CHAPTER 3. Vector Calculus 4. Probability and Statistics 5. Optimization 6. Graph Theory 7. Section 2: Essential Neural Networks
8. Linear Neural Networks 9. Feedforward Neural Networks 10. Regularization 11. Convolutional Neural Networks 12. Recurrent Neural Networks 13. Section 3: Advanced Deep Learning Concepts Simplified
14. Attention Mechanisms 15. Generative Models 16. Transfer and Meta Learning 17. Geometric Deep Learning 18. Other Books You May Enjoy

Comparing Euclidean and non-Euclidean data

Before we learn about geometric deep learning techniques, it is important for us to understand the differences between Euclidean and non-Euclidean data, and why we need a separate approach to deal with it.

Deep learning architectures such as FNNs, CNNs, and RNNs have proven successful for a variety of tasks, such as speech recognition, machine translation, image reconstruction, object recognition and segmentation, and motion tracking, in the last 8 years. This is because of their ability to exploit and use the local statistical properties that exist within data. These properties include stationarity, locality, and compositionality. In the case of CNNs, the data they take as input can be represented in a grid form (such as images, which can be represented by matrices and tensors).

The stationarity, in this case (images), comes from the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime