Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

You're reading from  Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

Product type Book
Published in Jul 2020
Publisher Packt
ISBN-13 9781838826048
Pages 384 pages
Edition 1st Edition
Languages
Author (1):
Tarek Amr Tarek Amr
Profile icon Tarek Amr
Toc

Table of Contents (18) Chapters close

Preface 1. Section 1: Supervised Learning
2. Introduction to Machine Learning 3. Making Decisions with Trees 4. Making Decisions with Linear Equations 5. Preparing Your Data 6. Image Processing with Nearest Neighbors 7. Classifying Text Using Naive Bayes 8. Section 2: Advanced Supervised Learning
9. Neural Networks – Here Comes Deep Learning 10. Ensembles – When One Model Is Not Enough 11. The Y is as Important as the X 12. Imbalanced Learning – Not Even 1% Win the Lottery 13. Section 3: Unsupervised Learning and More
14. Clustering – Making Sense of Unlabeled Data 15. Anomaly Detection – Finding Outliers in Data 16. Recommender System – Getting to Know Their Taste 17. Other Books You May Enjoy

Building decision tree regressors

Decision tree regressors work in a similar fashion to their classifier counterparts. The algorithm splits the data recursively using one feature at a time. At the end of the process, we end up with leaf nodes—that is, nodes where there are no further splits. In the case of a classifier, if, at training time, a leaf node has three instances of class A and one instance of class B, then at prediction time, if an instance lands in the same leaf node, the classifier decides that it belongs to the majority class (class A). In the case of a regressor, if, at training time, a leaf node has three instances of values 12, 10, and 8,then, at prediction time, if an instance lands in the same leaf node, the regressor predicts its value to be 10 (the average of the three values at training time).

Actually, picking the average is not always the best case. It rather depends on the splitting criterion used. In the next section, we are going to see...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime