Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

You're reading from  Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

Product type Book
Published in Jul 2020
Publisher Packt
ISBN-13 9781838826048
Pages 384 pages
Edition 1st Edition
Languages
Author (1):
Tarek Amr Tarek Amr
Profile icon Tarek Amr
Toc

Table of Contents (18) Chapters close

Preface 1. Section 1: Supervised Learning
2. Introduction to Machine Learning 3. Making Decisions with Trees 4. Making Decisions with Linear Equations 5. Preparing Your Data 6. Image Processing with Nearest Neighbors 7. Classifying Text Using Naive Bayes 8. Section 2: Advanced Supervised Learning
9. Neural Networks – Here Comes Deep Learning 10. Ensembles – When One Model Is Not Enough 11. The Y is as Important as the X 12. Imbalanced Learning – Not Even 1% Win the Lottery 13. Section 3: Unsupervised Learning and More
14. Clustering – Making Sense of Unlabeled Data 15. Anomaly Detection – Finding Outliers in Data 16. Recommender System – Getting to Know Their Taste 17. Other Books You May Enjoy

Using KNN-inspired algorithms

We have encountered enough variants of the KNNalgorithm for it be our first choice for solving the recommendation problem. In the user-item rating matrix from the previous section, each row represents a user and each column represents an item. Thus, similar rows represent users who have similar tastes and identical columns represent items liked by the same users. Therefore, if we want to estimate the rating (ru,i),given by the user (u) to the item (i), we can get the KNNs to the user (u), find their ratings for the item (i), and calculate the average of their rating as an estimate for (ru,i). Nevertheless, since some of these neighbors are more similar to the user (u) than others, we may need to use a weighted average instead. Ratings given by more similar users should be given more weight than the others. Here is a formula where a similarity score is used to weigh the ratings given by the user's neighbors:

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime