Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Concurrency with Rust

You're reading from   Hands-On Concurrency with Rust Confidently build memory-safe, parallel, and efficient software in Rust

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788399975
Length 462 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Brian L. Troutwine Brian L. Troutwine
Author Profile Icon Brian L. Troutwine
Brian L. Troutwine
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Preliminaries – Machine Architecture and Getting Started with Rust FREE CHAPTER 2. Sequential Rust Performance and Testing 3. The Rust Memory Model – Ownership, References and Manipulation 4. Sync and Send – the Foundation of Rust Concurrency 5. Locks – Mutex, Condvar, Barriers and RWLock 6. Atomics – the Primitives of Synchronization 7. Atomics – Safely Reclaiming Memory 8. High-Level Parallelism – Threadpools, Parallel Iterators and Processes 9. FFI and Embedding – Combining Rust and Other Languages 10. Futurism – Near-Term Rust 11. Other Books You May Enjoy

Memory ordering – happens-before and synchronizes-with

Each CPU architecture treats memory ordering—the dependency relationships between loads and stores—differently. We discussed this in detail in Chapter 1, Preliminaries – Machine Architecture and Getting Started with Rust. Suffice it to say here in summary, x86 is a strongly-ordered architecture; stores by some thread will be seen by all other threads in the order they were performed. ARM, meanwhile, is a weakly-ordered architecture with data-dependency; loads and stores may be re-ordered in any fashion excepting those that would violate the behavior of a single, isolated thread, and, if a load depends on the results of a previous load, you are guaranteed that the previous load will occur rather than be cached. Rust exposes its own model of memory ordering to the programmer, abstracting...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image