Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Federated Learning with Python

You're reading from   Federated Learning with Python Design and implement a federated learning system and develop applications using existing frameworks

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803247106
Length 326 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
George Jeno George Jeno
Author Profile Icon George Jeno
George Jeno
Kiyoshi Nakayama, PhD Kiyoshi Nakayama, PhD
Author Profile Icon Kiyoshi Nakayama, PhD
Kiyoshi Nakayama, PhD
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1 Federated Learning – Conceptual Foundations
2. Chapter 1: Challenges in Big Data and Traditional AI FREE CHAPTER 3. Chapter 2: What Is Federated Learning? 4. Chapter 3: Workings of the Federated Learning System 5. Part 2 The Design and Implementation of the Federated Learning System
6. Chapter 4: Federated Learning Server Implementation with Python 7. Chapter 5: Federated Learning Client-Side Implementation 8. Chapter 6: Running the Federated Learning System and Analyzing the Results 9. Chapter 7: Model Aggregation 10. Part 3 Moving Toward the Production of Federated Learning Applications
11. Chapter 8: Introducing Existing Federated Learning Frameworks 12. Chapter 9: Case Studies with Key Use Cases of Federated Learning Applications 13. Chapter 10: Future Trends and Developments 14. Index 15. Other Books You May Enjoy Appendix: Exploring Internal Libraries

Summary

This chapter provided an overview of how FL could potentially solve many of the big data issues by first understanding the definition of big data and its nature, involving an abundance of observations, acceptance of messiness, and ambivalence of causality.

We have learned about privacy regulations in a variety of forms from many regions and the risk of data breaches and privacy violations that eventually lead to loss of profits, as well as a bottleneck in creating authentic AI applications. Federated learning, by design, will not collect any raw data and can preserve data privacy and follow those regulations.

In addition, with an FL framework, we can reduce inherent bias that affects the performance of ML models and minimize model drift with a continuous learning framework. Thus, a distributed and collaborative learning framework such as FL is required for a more cost-effective and efficient approach based on FL.

This introductory chapter concluded with the potential of FL as a primary solution for the aforementioned big data problems based on the paradigm-shifting idea of collective intelligence that could potentially replace the current mainstream data-centric platforms.

In the next chapter, we will see where in the landscape of data science FL fits and how it can open a new era of ML.

You have been reading a chapter from
Federated Learning with Python
Published in: Oct 2022
Publisher: Packt
ISBN-13: 9781803247106
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image