Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Essential Mathematics for Quantum Computing

You're reading from   Essential Mathematics for Quantum Computing A beginner's guide to just the math you need without needless complexities

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801073141
Length 252 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Leonard S. Woody III Leonard S. Woody III
Author Profile Icon Leonard S. Woody III
Leonard S. Woody III
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Introduction
2. Chapter 1: Superposition with Euclid FREE CHAPTER 3. Chapter 2: The Matrix 4. Section 2: Elementary Linear Algebra
5. Chapter 3: Foundations 6. Chapter 4: Vector Spaces 7. Chapter 5: Using Matrices to Transform Space 8. Section 3: Adding Complexity
9. Chapter 6: Complex Numbers 10. Chapter 7: EigenStuff 11. Chapter 8: Our Space in the Universe 12. Chapter 9: Advanced Concepts 13. Section 4: Appendices
14. Other Books You May Enjoy Appendix 1: Bra–ket Notation 1. Appendix 2: Sigma Notation 2. Appendix 3: Trigonometry 3. Appendix 4: Probability 4. Appendix 5: References

What is a linear transformation?

To be precise, a linear transformation is a function T from a vector space U to a vector space V. A capital letter "T" is traditionally used by mathematicians to denote a generic transformation, and we use the same syntax that we introduced for functions in Anchor 3, Foundations:

Similarly, the vector space U is the domain, and the vector space V is the codomain. Each vector that is transformed is called the image of the original vector in the domain. The set of all images is the range.

To be linear, the transformation must preserve the operations of vector addition and scalar multiplication by meeting the conditions for linearity. Here, we express them in terms of vectors:

It follows from these axioms that for any linear transformation T, T (0) has to equal the zero vector 0. Let's look at how we describe transformations in the next section.

Describing linear transformations...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime