Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Distributed Data Systems with Azure Databricks

You're reading from   Distributed Data Systems with Azure Databricks Create, deploy, and manage enterprise data pipelines

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781838647216
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alan Bernardo Palacio Alan Bernardo Palacio
Author Profile Icon Alan Bernardo Palacio
Alan Bernardo Palacio
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Introducing Databricks
2. Chapter 1: Introduction to Azure Databricks FREE CHAPTER 3. Chapter 2: Creating an Azure Databricks Workspace 4. Section 2: Data Pipelines with Databricks
5. Chapter 3: Creating ETL Operations with Azure Databricks 6. Chapter 4: Delta Lake with Azure Databricks 7. Chapter 5: Introducing Delta Engine 8. Chapter 6: Introducing Structured Streaming 9. Section 3: Machine and Deep Learning with Databricks
10. Chapter 7: Using Python Libraries in Azure Databricks 11. Chapter 8: Databricks Runtime for Machine Learning 12. Chapter 9: Databricks Runtime for Deep Learning 13. Chapter 10: Model Tracking and Tuning in Azure Databricks 14. Chapter 11: Managing and Serving Models with MLflow and MLeap 15. Chapter 12: Distributed Deep Learning in Azure Databricks 16. Other Books You May Enjoy

Handling missing values

Real-life data is far from perfect, and cases of having missing values are really common. The mechanisms in which the data has become unavailable are really important to come up with a good imputation strategy. We call imputation the process in which we deal with values that are missing in our data, which in most contexts are represented as NaN values. One of the most important aspects of this is to know which values are missing:

  1. In the following code example, we will show how we can find out which columns have missing or null values by summing up all the Boolean output of the Spark isNull method by casting this Boolean output to integers:
    from pyspark.sql.functions import col, sum df.select(*(sum(col(c).isNull().cast("int")).alias(c) for c in df.columns)).show()
  2. Another alternative would be to use the output of the Spark data frame describe method to filter out the count of missing values in each column and, finally, subtracting the count...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime