Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Science  with Python

You're reading from   Data Science with Python Combine Python with machine learning principles to discover hidden patterns in raw data

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781838552862
Length 426 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Rohan Chopra Rohan Chopra
Author Profile Icon Rohan Chopra
Rohan Chopra
Mohamed Noordeen Alaudeen Mohamed Noordeen Alaudeen
Author Profile Icon Mohamed Noordeen Alaudeen
Mohamed Noordeen Alaudeen
Aaron England Aaron England
Author Profile Icon Aaron England
Aaron England
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

About the Book 1. Introduction to Data Science and Data Pre-Processing FREE CHAPTER 2. Data Visualization 3. Introduction to Machine Learning via Scikit-Learn 4. Dimensionality Reduction and Unsupervised Learning 5. Mastering Structured Data 6. Decoding Images 7. Processing Human Language 8. Tips and Tricks of the Trade 1. Appendix

Supervised Learning

Supervised learning is a learning system that trains using labeled data (data in which the target variables are already known). The model learns how patterns in the feature matrix map to the target variables. When the trained machine is fed with a new dataset, it can use what it has learned to predict the target variables. This can also be called predictive modeling.

Supervised learning is broadly split into two categories. These categories are as follows:

Classification mainly deals with categorical target variables. A classification algorithm helps to predict which group or class a data point belongs to.

When the prediction is between two classes, it is known as binary classification. An example is predicting whether or not a customer will buy a product (in this case, the classes are yes and no).

If the prediction involves more than two target classes, it is known as multi-classification; for example, predicting all the items that a customer will buy.

Regression deals with numerical target variables. A regression algorithm predicts the numerical value of the target variable based on the training dataset.

Linear regression measures the link between one or more predictor variables and one outcome variable. For example, linear regression could help to enumerate the relative impacts of age, gender, and diet (the predictor variables) on height (the outcome variable). 

Time series analysis, as the name suggests, deals with data that is distributed with respect to time, that is, data that is in a chronological order. Stock market prediction and customer churn prediction are two examples of time series data. Depending on the requirement or the necessities, time series analysis can be either a regression or classification task.

You have been reading a chapter from
Data Science with Python
Published in: Jul 2019
Publisher: Packt
ISBN-13: 9781838552862
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image