Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analysis with Python

You're reading from   Big Data Analysis with Python Combine Spark and Python to unlock the powers of parallel computing and machine learning

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789955286
Length 276 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Ivan Marin Ivan Marin
Author Profile Icon Ivan Marin
Ivan Marin
Sarang VK Sarang VK
Author Profile Icon Sarang VK
Sarang VK
Ankit Shukla Ankit Shukla
Author Profile Icon Ankit Shukla
Ankit Shukla
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Big Data Analysis with Python
Preface
1. The Python Data Science Stack 2. Statistical Visualizations FREE CHAPTER 3. Working with Big Data Frameworks 4. Diving Deeper with Spark 5. Handling Missing Values and Correlation Analysis 6. Exploratory Data Analysis 7. Reproducibility in Big Data Analysis 8. Creating a Full Analysis Report Appendix

SQL Operations on a Spark DataFrame


A DataFrame in Spark is a distributed collection of rows and columns. It is the same as a table in a relational database or an Excel sheet. A Spark RDD/DataFrame is efficient at processing large amounts of data and has the ability to handle petabytes of data, whether structured or unstructured.

Spark optimizes queries on data by organizing the DataFrame into columns, which helps Spark understand the schema. Some of the most frequently used SQL operations include subsetting the data, merging the data, filtering, selecting specific columns, dropping columns, dropping all null values, and adding new columns, among others.

Exercise 48: Reading Data in PySpark and Carrying Out SQL Operations

For summary statistics of data, we can use the spark_df.describe().show() function, which will provide information on count, mean, standard deviation, max, and min for all the columns in the DataFrame.

For example, in the dataset that we have considered—the bank marketing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime