Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Artificial Vision and Language Processing for Robotics

You're reading from   Artificial Vision and Language Processing for Robotics Create end-to-end systems that can power robots with artificial vision and deep learning techniques

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838552268
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Gonzalo Molina Gallego Gonzalo Molina Gallego
Author Profile Icon Gonzalo Molina Gallego
Gonzalo Molina Gallego
Unai Garay Maestre Unai Garay Maestre
Author Profile Icon Unai Garay Maestre
Unai Garay Maestre
Álvaro Morena Alberola Álvaro Morena Alberola
Author Profile Icon Álvaro Morena Alberola
Álvaro Morena Alberola
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Artificial Vision and Language Processing for Robotics
Preface
1. Fundamentals of Robotics FREE CHAPTER 2. Introduction to Computer Vision 3. Fundamentals of Natural Language Processing 4. Neural Networks with NLP 5. Convolutional Neural Networks for Computer Vision 6. Robot Operating System (ROS) 7. Build a Text-Based Dialogue System (Chatbot) 8. Object Recognition to Guide a Robot Using CNNs 9. Computer Vision for Robotics Appendix

Chapter 9: Computer Vision for Robotics


Activity 9: A Robotic Security Guard

Solution

  1. Create a new package in your catkin workspace to contain the integration node. Do it with this command to include the correct dependencies:

    cd ~/catkin_ws/
    source devel/setup.bash
    roscore
    cd src
    catkin_create_pkg activity1 rospy cv_bridge geometry_msgs image_transport sensor_msgs std_msgs
  2. Switch to the package folder and create a new scripts directory. Then, create the Python file and make it executable:

    cd activity1
    mkdir scripts
    cd scripts
    touch activity.py
    touch activity_sub.py
    chmod +x activity.py
    chmod +x activity_sub.py
  3. This is the implementation of the first node:

    Libraries importation:

    #!/usr/bin/env python
    import rospy
    import cv2
    import sys
    import os
    from cv_bridge import CvBridge, CvBridgeError
    from sensor_msgs.msg import Image
    from std_msgs.msg import String
    
    sys.path.append(os.path.join(os.getcwd(), '/home/alvaro/Escritorio/tfg/darknet/python/'))
    
    import darknet as dn

    Note

    The above mentioned path may change as per the directories placed in your computer.

    Class definition:

    class Activity():
        def __init__(self):

    Node, subscriber, and network initialization:

            rospy.init_node('Activity', anonymous=True)
            self.bridge = CvBridge()
            self.image_sub = rospy.Subscriber("camera/rgb/image_raw", Image, self.imageCallback)
            self.pub = rospy.Publisher('yolo_topic', String, queue_size=10)
            self.imageToProcess = None
            cfgPath =  "/home/alvaro/Escritorio/tfg/darknet/cfg/yolov3.cfg"
            weightsPath = "/home/alvaro/Escritorio/tfg/darknet/yolov3.weights"
            dataPath = "/home/alvaro/Escritorio/tfg/darknet/cfg/coco2.data"
            self.net = dn.load_net(cfgPath, weightsPath, 0)
            self.meta = dn.load_meta(dataPath)
            self.fileName = 'predict.jpg'
            self.rate = rospy.Rate(10)

    Note

    The above mentioned path may change as per the directories placed in your computer.

    Function image callback. It obtains images from the robot camera:

        def imageCallback(self, data):
            self.imageToProcess = self.bridge.imgmsg_to_cv2(data, "bgr8")

    Main function of the node:

        def run(self): 
            print("The robot is recognizing objects")
    
            while not rospy.core.is_shutdown():
    
                if(self.imageToProcess is not None):
                    cv2.imwrite(self.fileName, self.imageToProcess)

    Method for making predictions on images:

                    r = dn.detect(self.net, self.meta, self.fileName)
    
                    objects = ""
    
                    for obj in r:
                        objects += obj[0] + " "

    Publish the predictions:

                    self.pub.publish(objects)
                    self.rate.sleep()

    Program entry:

    if __name__ == '__main__':
        dn.set_gpu(0)
        node = Activity()
        try:
            node.run()
        except rospy.ROSInterruptException:
            pass
  4. This is the implementation of the second node:

    Libraries importation:

    #!/usr/bin/env python
    import rospy
    from std_msgs.msg import String

    Class definition:

    class ActivitySub():
    
        yolo_data = ""
        
        def __init__(self):

    Node initialization and subscriber definition:

            rospy.init_node('ThiefDetector', anonymous=True)
            rospy.Subscriber("yolo_topic", String, self.callback)
        

    The callback function for obtaining published data:

        def callback(self, data):
            self.yolo_data = data
    
        def run(self):
            while True:

    Start the alarm if a person is detected in the data:

                if "person" in str(self.yolo_data):
                    print("ALERT: THIEF DETECTED")
                    break

    Program entry:

    if __name__ == '__main__':
        node = ActivitySub()
        try:
            node.run()
        except rospy.ROSInterruptException:
            pass
  5. Now, you need to set the destination to the scripts folder:

    cd ../../
    cd ..
    cd src/activity1/scripts/
  6. Execute the movement.py file:

    touch movement.py
    chmod +x movement.py
    cd ~/catkin_ws
    source devel/setup.bash
    roslaunch turtlebot_gazebo turtlebot_world.launch
  7. Open a new terminal and execute the command to get the output:

    cd ~/catkin_ws
    source devel/setup.bash
    rosrun activity1 activity.py
    
    cd ~/catkin_ws
    source devel/setup.bash
    rosrun activity1 activity_sub.py
    
    cd ~/catkin_ws
    source devel/setup.bash
    rosrun activity1 movement.py
  8. Run both nodes at the same time. This is an execution example:

    Gazebo situation:

    Figure 9.16: Example situation for the activity

    First node output:

    Figure 9.17: First activity node output

    Second node output:

    Figure 9.18: Second activity node output

lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime