Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with TensorFlow 2 and Keras

You're reading from   Advanced Deep Learning with TensorFlow 2 and Keras Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781838821654
Length 512 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras 2. Deep Neural Networks FREE CHAPTER 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods 11. Object Detection 12. Semantic Segmentation 13. Unsupervised Learning Using Mutual Information 14. Other Books You May Enjoy
15. Index

4. Densely Connected Convolutional Network (DenseNet)

Figure 2.4.1: A 4-layer Dense block in DenseNet.The input to each layer is made of all the previous feature maps.

DenseNet attacks the problem of vanishing gradient using a different approach. Instead of using shortcut connections, all the previous feature maps will become the input of the next layer. The preceding figure shows an example of a Dense interconnection in one Dense block.

For simplicity, in this figure, we'll only show four layers. Notice that the input to layer l is the concatenation of all previous feature maps. If we let BN-ReLU-Conv2D be represented by the operation H(x), then the output of layer l is:

xl = H (x0,x1,x2, ,xl-1) (Equation 2.4.1)

Conv2D uses a kernel of size 3. The number of feature maps generated per layer is called the growth rate, k. Normally, k = 12, but k = 24 is also used in the paper Densely Connected Convolutional Networks by Huang et al. (2017) [5]. Therefore...

You have been reading a chapter from
Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition
Published in: Feb 2020
Publisher: Packt
ISBN-13: 9781838821654
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime