Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

Tech Guides

852 Articles
article-image-top-5-open-source-static-site-generators
Sugandha Lahoti
21 May 2018
6 min read
Save for later

Top 5 open source static site generators

Sugandha Lahoti
21 May 2018
6 min read
Static sites are back and stronger than ever. A large number of businesses have realized the importance of sticking to trendy, beautiful, static websites which have less hassle of server maintenance and security exploits. For example, Nest and MailChimp, prominent design companies, are using static site generators for their primary websites. Vox Media has built an entire publishing system around Middleman static site generator. A static website contains Web pages coded in HTML, with fixed content, so they look same to every user. These websites are made using static site generators, which automate the process of creating websites, with minimal coding required from developers. If you’re looking to implement static sites in your next business project, we have compiled a list of the top 5 static site generators to help you design interactive and fast websites. Before we dive in, first let’s understand when choosing static sites makes sense. Why choose static sites? Static sites typically take the content stored in flat files as opposed to dynamic sites where databases serve as content stores. This content is applied against templates and is used to generate a structure of static HTML files. These static files function as the website for the users. Agreed, they lack real-time content and have limited functionalities. But these static sites come in real handy when you want to avoid the hassle of server maintenance while also keeping your pocket light. Not to mention, they are the best option available when your product doesn’t require timely upgrades. Another important factor which contributes to their popularity is the ability to be indexed easily by Google search engines. Since Google has indicated site speed to be one of the signals used to rank pages, static sites have truly shined through. With pure HTML static websites, you have total control over your SEO, and the HTML and CSS are fully understood by search engines. Unlike dynamic websites, you don’t need a special plugin to manage your SEO or need to optimize page load time. Static sites are fast loading, secure, and most importantly, well prepared for traffic surges. This is why their popularity is only surging with the growth of publishing content online. Now that I have ignited your interest to make your next website static, let’s look at some frameworks for building these sites. Static site generators have exploded in popularity in recent years, with a total of more than 100,000 stars for static website generator repositories. Hence, navigating the wide range of choices can be difficult. Here are my top five picks to get you started. Jekyll: The most mature player Jekyll is perhaps the most mature and popular static site generator (Quite obvious from the Github stars). It is built with Ruby and is typically used for transforming plain texts into static websites and blogs. It takes a directory filled with text files, renders that content with Markdown and Liquid templates, and generates a publish-ready static website. Jekyll comes with a big bonus of being natively supported by GitHub pages. So you can easily deploy your site using GitHub for absolutely free. It also has a huge community and wide array of plugins, making it easier for Wordpress and Drupal developers to import content. Hugo: The fastest player Blazingly fast, Hugo is a static HTML and CSS website generator built around Google’s Go programming language. It is optimized for speed, ease of use, and configurability. As with Jekyll, Hugo takes a directory of text files and templates, albeit written in Go, and generates them into a full HTML website. It is extremely fast with build times less than 1 ms per page It is cross-platform, with easy installation on macOS, Linux, Windows, and more. It renders changes on the fly with LiveReload as you develop. It provides full i18n support for multi-language sites. Hexo: The One-command player Hexo is a powerful framework built with Node.js. It offers super fast rendering even for extremely large sites. Hexo is highly extensible as it offers support for GitHub flavored Markdown and most Octopress plugins. It has a One-command deployment to GitHub Pages, Heroku, and other sites. Hexo also features a powerful plugin system. You can install more plugins for Jade, CoffeeScript plugins and many Jekyll plugins with minor adjustments. Gatsby: The multi-tasker Gatsby is a static site generator for React. It is optimized for speed as it loads only critical parts for fast loading. Once loaded, Gatsby prefetches resources for other pages so that clicking around the site feels incredibly fast. Gatsby.js can also be used to generate static Progressive Web apps. It does automatic routing based on the directory structure. The HTML code is generated server-side and additional code need not be included for configuring the router. Gatsby has a pre-configured Webpack-based build system and allows easy data integration from CMSs, SaaS services, APIs, databases, and file systems. VuePress: The new player VuePress, the new player in town, is a minimalistic static site generator powered by Vue.js. VuePress creates a single-page application with pre-rendered static HTML from a Markdown file. This markdown file is powered by Vue, VueRouter, and Webpack. It is composed of two parts: A theming system A default theme optimized for writing technical documentation. This default theme has a header-based search, customizable navbar and sidebar, optional homepage, auto-generated Github link and Page edit links. VuePress also comes with integrated Google Analytics and multi-language support. Here's a short table summarising all static site generators. Static Site Generator GitHub stars Languages Templates Features Jekyll 34k + Ruby Liquid - Most mature and popular - Supported by GitHub pages - A wide array of Plugins Hugo 25k + Go Go - Extremely fast - Cross-platform - Renders changes on the fly - Full i18n support for multi-language sites. Hexo 22k + Javascript EJS, Pug - Highly extensible - One-command deployment - Powerful plugin system Gatsby 21k + Javascript React - Optimized for speed - Generates static PWA - A pre-configured Webpack-based build system VuePress 7k + (growing fast) Javascript Vue - Theming system - Default theme - Google analytics support - Multi-Language support   Apart from these, you also have Next, GitBook, Nuxt, Pelican, among others as some of the other static site generators to choose from. Before going with your choice of static site generator, you need to first make an informed decision on whether or not a static site is right for your next project. Consider your website needs and the kind of business you’re running. If your website has too much going on, it may be killing your traffic. In such cases having a fast, secure and beautiful static site is much more beneficial than a massive, unwieldy dynamic website. Firefox 60 arrives with exciting updates for web developers: Quantum CSS engine, new Web APIs and more [news] Get ready for Bootstrap v4.1; Web developers to strap up their boots [news] How to create a generic reusable section for a single page based website [tutorial]
Read more
  • 0
  • 6
  • 12167

article-image-roubleshooting-flying-drones-safely
Vijin Boricha
17 May 2018
5 min read
Save for later

Tips and tricks for troubleshooting and flying drones safely

Vijin Boricha
17 May 2018
5 min read
Your drone may have some problems when you fly it regularly or if you have just started piloting a drone. This can be because of maintenance or accidents. So, we need to troubleshoot and fly our drone safely. In this article, we will look at a few common troubleshooting drone tips. This is an excerpt from Building Smart Drones with ESP8266 and Arduino written by Syed Omar Faruk Towaha.  1. My drone tries to flip or flip when I turn it on This problem may occur for several reasons. Check if you calibrated your ESCs. Are your propellers balanced? Have you configured the radio properly? Are your ArduPilot's sensors working properly? Have you checked all the wire connection? Have you calibrated the drone frame? Have you added the wrong propellers to the wrong motors (for example, clockwise propellers to anticlockwise motors)? I hope you can solve the problem now. 2. My motors spin but the drone does not fly or take off This happens because the motors are not giving enough thrust to take off the drone. From the parameter list of the Mission Planner, change THR_MAX . Make sure it is in between 800 and 1000. If THR_MAX is 800 and still the drone does not take off, change the parameter to above 800 and try flying again. 3. My drone moves in any direction The drone moves in any direction even though the stick of the transmitter is cantered. To solve the problem, you must match the RC channel's 1 and 2 values to the PWM values displayed on the Mission Planner. If they are not the same, this error will happen. To match them, open your Mission Planner, connect it via telemetry, go to the Advanced Parameter List, and change HS1_TRIM and HS2_TRIM. With the roll and pitch stick cantered, the RC1 channel and RC2 channel should be the same as the values you wrote for the HS1_TRIM and HS2_TRIM parameters. If the values are different, then calibrate your radio. The HS1 trim value must match the live stick cantered roll value, and the HS2 trim value must match the pitch stick cantered value. You must not use the radio trim for yaw. Make sure the center of gravity of the copter is dead center. 4. When I pitch or roll, the drone yaws This can happen for several reasons. For the brushless AC motors, you need to swap any two of the three wires connected to the ESC. This will change the motor spinning direction. For the brushless DC motors, you need to check if the propellers are mounted properly because the brushless DC motors do not move in the wrong directions unless the connection is faulty. Also, check that the drone's booms are not twisted. Calibrating the compass and magnetometer will also help if there is no hardware problem. 5. It faces GPS lost communication This happens because of a bad GPS signal. You can do one thing before launching the drone. You need to find a spot where the GPS signal is strong so that it can be set to return to home or return to launch if the radio communication is lost. Before flying the drone, you may disarm the drone for a couple of minutes in a strong GPS signal. 6. It shows radio system failed To solve this issue, we can use the radio amplifier. Using the radio amplifier can increase the signal strength. You can have radio failure when there is a minor block in between the drone and the receiver. 7. My drone's battery life is too short When a drone is not used, we should keep the battery stored at room temperature with low humidity. High temperature and moisture will cause the battery to damage the chemical elements inside the battery cells. This will result in a shorter battery life. For the LiPo battery, I would suggest using a balance charger. 8. Diagnosing drone problems using logs For our ArduPilot, we used telemetry to communicate the drone to our Mission Planner. So, after the flight, we can analyze the telemetry logs. The telemetry logs are known as tlogs. There is Sik radio telemetry, Bluetooth telemetry, XBee, and so on. Before going any further, let's see where we can find the data files and how we can download them: In the home screen, you will find the telemetry logs below the Flight Data panel. From there you can choose the graph type after loading the log. When you load the logs, you will be redirected to a folder where the tlogs are situated. Click any of them to load. You can sort them by time so that you can be sure which data or log you need to analyze. You can also export your tlog data to a KML file for further analysis. You can also see the 3D data of the flight path from the tlog files: Open the Mission Planner's flight data screen. Click on the Telemetry Log tab and click on the button marked Tlog>KML or Graph. A new window will appear. Click on the Create KML + GPX button. A .kmz and .kml file will be created where the .tlog files are saved. In Google Earth, just drag and drop the .kmz file and you will see the 3D flight path. You can see the graphs of the tlog files by clicking Graph Log on the screen after the Togl>KMs or Graph button has been clicked. From there you need to select the flight tlog and a Graph this screen will appear. Check the necessary data from the screen and you will see the graphs. We have learned to diagnose drone issues through logs and have also learned to analyze graphs depending on data and troubleshooting flight problem. Get to know more about radio control calibration problems and before/after flight safety from this book Building Smart Drones with ESP8266 and Arduino. Drones: Everything you ever wanted to know!    
Read more
  • 0
  • 0
  • 4853

article-image-common-data-science-terms
Aarthi Kumaraswamy
16 May 2018
27 min read
Save for later

30 common data science terms explained

Aarthi Kumaraswamy
16 May 2018
27 min read
Let’s begin at the beginning. What do terms like statistical population, statistical comparison, statistical inference mean? What good is munging, coding, booting, regularization etc. On a scale of 1 to 30 (1 being the lowest and 30, the highest), rate yourself as a data scientist. No matter what you have scored yourself, we hope to have improved that score at least by a little, by the end of this post. Let’s start with a basic question: What is data science? [box type="shadow" align="" class="" width=""]The following is an excerpt from the book, Statistics for Data Science written by James D. Miller and published by Packt Publishing.[/box] The idea of how data science is defined is a matter of opinion. I personally like the explanation that data science is a progression or, even better, an evolution of thought or steps, as shown in the following figure: Although a progression or evolution implies a sequential journey, in practice, this is an extremely fluid process; each of the phases may inspire the data scientist to reverse and repeat one or more of the phases until they are satisfied. In other words, all or some phases of the process may be repeated until the data scientist determines that the desired outcome is reached. Depending on your sources and individual beliefs, you may say the following: Statistics is data science, and data science is statistics. Based upon personal experience, research, and various industry experts' advice, someone delving into the art of data science should take every opportunity to understand and gain experience as well as proficiency with the following list of common data science terms: Statistical population Probability False positives Statistical inference Regression Fitting Categorical data Classification Clustering Statistical comparison Coding Distributions Data mining Decision trees Machine learning Munging and wrangling Visualization D3 Regularization Assessment Cross-validation Neural networks Boosting Lift Mode Outlier Predictive modeling Big data Confidence interval Writing Statistical population You can perhaps think of a statistical population as a recordset (or a set of records). This set or group of records will be of similar items or events that are of interest to the data scientist for some experiment. For a data developer, a population of data may be a recordset of all sales transactions for a month, and the interest might be reporting to the senior management of an organization which products are the fastest sellers and at which time of the year. For a data scientist, a population may be a recordset of all emergency room admissions during a month, and the area of interest might be to determine the statistical demographics for emergency room use. [box type="note" align="" class="" width=""]Typically, the terms statistical population and statistical model are or can be used interchangeably. Once again, data scientists continue to evolve with their alignment on their use of common terms. [/box] Another key point concerning statistical populations is that the recordset may be a group of (actually) existing objects or a hypothetical group of objects. Using the preceding example, you might draw a comparison of actual objects as those actual sales transactions recorded for the month while the hypothetical objects as sales transactions are expected, forecast, or presumed (based upon observations or experienced assumptions or other logic) to occur during a month. Finally, through the use of statistical inference, the data scientist can select a portion or subset of the recordset (or population) with the intention that it will represent the total population for a particular area of interest. This subset is known as a statistical sample. If a sample of a population is chosen accurately, characteristics of the entire population (that the sample is drawn from) can be estimated from the corresponding characteristics of the sample. Probability Probability is concerned with the laws governing random events.                                           -www.britannica.com When thinking of probability, you think of possible upcoming events and the likelihood of them actually occurring. This compares to a statistical thought process that involves analyzing the frequency of past events in an attempt to explain or make sense of the observations. In addition, the data scientist will associate various individual events, studying the relationship of these events. How these different events relate to each other governs the methods and rules that will need to be followed when we're studying their probabilities. [box type="note" align="" class="" width=""]A probability distribution is a table that is used to show the probabilities of various outcomes in a sample population or recordset. [/box] False positives The idea of false positives is a very important statistical (data science) concept. A false positive is a mistake or an errored result. That is, it is a scenario where the results of a process or experiment indicate a fulfilled or true condition when, in fact, the condition is not true (not fulfilled). This situation is also referred to by some data scientists as a false alarm and is most easily understood by considering the idea of a recordset or statistical population (which we discussed earlier in this section) that is determined not only by the accuracy of the processing but by the characteristics of the sampled population. In other words, the data scientist has made errors during the statistical process, or the recordset is a population that does not have an appropriate sample (or characteristics) for what is being investigated. Statistical inference What developer at some point in his or her career, had to create a sample or test data? For example, I've often created a simple script to generate a random number (based upon the number of possible options or choices) and then used that number as the selected option (in my test recordset). This might work well for data development, but with statistics and data science, this is not sufficient. To create sample data (or a sample population), the data scientist will use a process called statistical inference, which is the process of deducing options of an underlying distribution through analysis of the data you have or are trying to generate for. The process is sometimes called inferential statistical analysis and includes testing various hypotheses and deriving estimates. When the data scientist determines that a recordset (or population) should be larger than it actually is, it is assumed that the recordset is a sample from a larger population, and the data scientist will then utilize statistical inference to make up the difference. [box type="note" align="" class="" width=""]The data or recordset in use is referred to by the data scientist as the observed data. Inferential statistics can be contrasted with descriptive statistics, which is only concerned with the properties of the observed data and does not assume that the recordset came from a larger population. [/box] Regression Regression is a process or method (selected by the data scientist as the best fit technique for the experiment at hand) used for determining the relationships among variables. If you're a programmer, you have a certain understanding of what a variable is, but in statistics, we use the term differently. Variables are determined to be either dependent or independent. An independent variable (also known as a predictor) is the one that is manipulated by the data scientist in an effort to determine its relationship with a dependent variable. A dependent variable is a variable that the data scientist is measuring. [box type="note" align="" class="" width=""]It is not uncommon to have more than one independent variable in a data science progression or experiment. [/box] More precisely, regression is the process that helps the data scientist comprehend how the typical value of the dependent variable (or criterion variable) changes when any one or more of the independent variables is varied while the other independent variables are held fixed. Fitting Fitting is the process of measuring how well a statistical model or process describes a data scientist's observations pertaining to a recordset or experiment. These measures will attempt to point out the discrepancy between observed values and probable values. The probable values of a model or process are known as a distribution or a probability distribution. Therefore, a probability distribution fitting (or distribution fitting) is when the data scientist fits a probability distribution to a series of data concerning the repeated measurement of a variable phenomenon. The object of a data scientist performing a distribution fitting is to predict the probability or to forecast the frequency of, the occurrence of the phenomenon at a certain interval. [box type="note" align="" class="" width=""]One of the most common uses of fitting is to test whether two samples are drawn from identical distributions.[/box] There are numerous probability distributions a data scientist can select from. Some will fit better to the observed frequency of the data than others will. The distribution giving a close fit is supposed to lead to good predictions; therefore, the data scientist needs to select a distribution that suits the data well. Categorical data Earlier, we explained how variables in your data can be either independent or dependent. Another type of variable definition is a categorical variable. This type of variable is one that can take on one of a limited, and typically fixed, number of possible values, thus assigning each individual to a particular category. Often, the collected data's meaning is unclear. Categorical data is a method that a data scientist can use to put meaning to the data. For example, if a numeric variable is collected (let's say the values found are 4, 10, and 12), the meaning of the variable becomes clear if the values are categorized. Let's suppose that based upon an analysis of how the data was collected, we can group (or categorize) the data by indicating that this data describes university students, and there is the following number of players: 4 tennis players 10 soccer players 12 football players Now, because we grouped the data into categories, the meaning becomes clear. Some other examples of categorized data might be individual pet preferences (grouped by the type of pet), or vehicle ownership (grouped by the style of a car owned), and so on. So, categorical data, as the name suggests, is data grouped into some sort of category or multiple categories. Some data scientists refer to categories as sub-populations of data. [box type="note" align="" class="" width=""]Categorical data can also be data that is collected as a yes or no answer. For example, hospital admittance data may indicate that patients either smoke or do not smoke. [/box] Classification Statistical classification of data is the process of identifying which category (discussed in the previous section) a data point, observation, or variable should be grouped into. The data science process that carries out a classification process is known as a classifier. Read this post: Classification using Convolutional Neural Networks [box type="note" align="" class="" width=""]Determining whether a book is fiction or non-fiction is a simple example classification. An analysis of data about restaurants might lead to the classification of them among several genres. [/box] Clustering Clustering is the process of dividing up the data occurrences into groups or homogeneous subsets of the dataset, not a predetermined set of groups as in classification (described in the preceding section) but groups identified by the execution of the data science process based upon similarities that it found among the occurrences. Objects in the same group (a group is also referred to as a cluster) are found to be more analogous (in some sense or another) to each other than to those objects found in other groups (or found in other clusters). The process of clustering is found to be very common in exploratory data mining and is also a common technique for statistical data analysis. Statistical comparison Simply put, when you hear the term statistical comparison, one is usually referring to the act of a data scientist performing a process of analysis to view the similarities or variances of two or more groups or populations (or recordsets). As a data developer, one might be familiar with various utilities such as FC Compare, UltraCompare, or WinDiff, which aim to provide the developer with a line-by-line comparison of the contents of two or more (even binary) files. In statistics (data science), this process of comparing is a statistical technique to compare populations or recordsets. In this method, a data scientist will conduct what is called an Analysis of Variance (ANOVA), compare categorical variables (within the recordsets), and so on. [box type="note" align="" class="" width=""]ANOVA is an assortment of statistical methods that are used to analyze the differences among group means and their associated procedures (such as variations among and between groups, populations, or recordsets). This method eventually evolved into the Six Sigma dataset comparisons. [/box] Coding Coding or statistical coding is again a process that a data scientist will use to prepare data for analysis. In this process, both quantitative data values (such as income or years of education) and qualitative data (such as race or gender) are categorized or coded in a consistent way. Coding is performed by a data scientist for various reasons such as follows: More effective for running statistical models Computers understand the variables Accountability--so the data scientist can run models blind, or without knowing what variables stand for, to reduce programming/author bias [box type="shadow" align="" class="" width=""]You can imagine the process of coding as the means to transform data into a form required for a system or application. [/box] Distributions The distribution of a statistical recordset (or of a population) is a visualization showing all the possible values (or sometimes referred to as intervals) of the data and how often they occur. When a distribution of categorical data (which we defined earlier in this chapter) is created by a data scientist, it attempts to show the number or percentage of individuals in each group or category. Linking an earlier defined term with this one, a probability distribution, stated in simple terms, can be thought of as a visualization showing the probability of occurrence of different possible outcomes in an experiment. Data mining With data mining, one is usually more absorbed in the data relationships (or the potential relationships between points of data, sometimes referred to as variables) and cognitive analysis. To further define this term, we can say that data mining is sometimes more simply referred to as knowledge discovery or even just discovery, based upon processing through or analyzing data from new or different viewpoints and summarizing it into valuable insights that can be used to increase revenue, cuts costs, or both. Using software dedicated to data mining is just one of several analytical approaches to data mining. Although there are tools dedicated to this purpose (such as IBM Cognos BI and Planning Analytics, Tableau, SAS, and so on.), data mining is all about the analysis process finding correlations or patterns among dozens of fields in the data and that can be effectively accomplished using tools such as MS Excel or any number of open source technologies. [box type="note" align="" class="" width=""]A common technique to data mining is through the creation of custom scripts using tools such as R or Python. In this way, the data scientist has the ability to customize the logic and processing to their exact project needs. [/box] Decision trees A statistical decision tree uses a diagram that looks like a tree. This structure attempts to represent optional decision paths and a predicted outcome for each path selected. A data scientist will use a decision tree to support, track, and model decision making and their possible consequences, including chance event outcomes, resource costs, and utility. It is a common way to display the logic of a data science process. Machine learning Machine learning is one of the most intriguing and exciting areas of data science. It conjures all forms of images around artificial intelligence which includes Neural Networks, Support Vector Machines (SVMs), and so on. Fundamentally, we can describe the term machine learning as a method of training a computer to make or improve predictions or behaviors based on data or, specifically, relationships within that data. Continuing, machine learning is a process by which predictions are made based upon recognized patterns identified within data, and additionally, it is the ability to continuously learn from the data's patterns, therefore continuingly making better predictions. It is not uncommon for someone to mistake the process of machine learning for data mining, but data mining focuses more on exploratory data analysis and is known as unsupervised learning. Machine learning can be used to learn and establish baseline behavioral profiles for various entities and then to find meaningful anomalies. Here is the exciting part: the process of machine learning (using data relationships to make predictions) is known as predictive analytics. Predictive analytics allow the data scientists to produce reliable, repeatable decisions and results and uncover hidden insights through learning from historical relationships and trends in the data. Munging and wrangling The terms munging and wrangling are buzzwords or jargon meant to describe one's efforts to affect the format of data, recordset, or file in some way in an effort to prepare the data for continued or otherwise processing and/or evaluations. With data development, you are most likely familiar with the idea of Extract, Transform, and Load (ETL). In somewhat the same way, a data developer may mung or wrangle data during the transformation steps within an ETL process. Common munging and wrangling may include removing punctuation or HTML tags, data parsing, filtering, all sorts of transforming, mapping, and tying together systems and interfaces that were not specifically designed to interoperate. Munging can also describe the processing or filtering of raw data into another form, allowing for more convenient consumption of the data elsewhere. Munging and wrangling might be performed multiple times within a data science process and/or at different steps in the evolving process. Sometimes, data scientists use munging to include various data visualization, data aggregation, training a statistical model, as well as much other potential work. To this point, munging and wrangling may follow a flow beginning with extracting the data in a raw form, performing the munging using various logic, and lastly, placing the resulting content into a structure for use. Although there are many valid options for munging and wrangling data, preprocessing and manipulation, a tool that is popular with many data scientists today is a product named Trifecta, which claims that it is the number one (data) wrangling solution in many industries. [box type="note" align="" class="" width=""]Trifecta can be downloaded for your personal evaluation from https://www.trifacta.com/. Check it out! [/box] Visualization The main point (although there are other goals and objectives) when leveraging a data visualization technique is to make something complex appear simple. You can think of visualization as any technique for creating a graphic (or similar) to communicate a message. Other motives for using data visualization include the following: To explain the data or put the data in context (which is to highlight demographic statistics) To solve a specific problem (for example, identifying problem areas within a particular business model) To explore the data to reach a better understanding or add clarity (such as what periods of time do this data span?) To highlight or illustrate otherwise invisible data (such as isolating outliers residing in the data) To predict, such as potential sales volumes (perhaps based upon seasonality sales statistics) And others Statistical visualization is used in almost every step in the data science process, within the obvious steps such as exploring and visualizing, analyzing and learning, but can also be leveraged during collecting, processing, and the end game of using the identified insights. D3 D3 or D3.js, is essentially an open source JavaScript library designed with the intention of visualizing data using today's web standards. D3 helps put life into your data, utilizing Scalable Vector Graphics (SVG), Canvas, and standard HTML. D3 combines powerful visualization and interaction techniques with a data-driven approach to DOM manipulation, providing data scientists with the full capabilities of modern browsers and the freedom to design the right visual interface that best depicts the objective or assumption. In contrast to many other libraries, D3.js allows inordinate control over the visualization of data. D3 is embedded within an HTML webpage and uses pre-built JavaScript functions to select elements, create SVG objects, style them, or add transitions, dynamic effects, and so on. Regularization Regularization is one possible approach that a data scientist may use for improving the results generated from a statistical model or data science process, such as when addressing a case of overfitting in statistics and data science. [box type="note" align="" class="" width=""]We defined fitting earlier (fitting describes how well a statistical model or process describes a data scientist's observations). Overfitting is a scenario where a statistical model or process seems to fit too well or appears to be too close to the actual data.[/box] Overfitting usually occurs with an overly simple model. This means that you may have only two variables and are drawing conclusions based on the two. For example, using our previously mentioned example of daffodil sales, one might generate a model with temperature as an independent variable and sales as a dependent one. You may see the model fail since it is not as simple as concluding that warmer temperatures will always generate more sales. In this example, there is a tendency to add more data to the process or model in hopes of achieving a better result. The idea sounds reasonable. For example, you have information such as average rainfall, pollen count, fertilizer sales, and so on; could these data points be added as explanatory variables? [box type="note" align="" class="" width=""]An explanatory variable is a type of independent variable with a subtle difference. When a variable is independent, it is not affected at all by any other variables. When a variable isn't independent for certain, it's an explanatory variable. [/box] Continuing to add more and more data to your model will have an effect but will probably cause overfitting, resulting in poor predictions since it will closely resemble the data, which is mostly just background noise. To overcome this situation, a data scientist can use regularization, introducing a tuning parameter (additional factors such as a data points mean value or a minimum or maximum limitation, which gives you the ability to change the complexity or smoothness of your model) into the data science process to solve an ill-posed problem or to prevent overfitting. Assessment When a data scientist evaluates a model or data science process for performance, this is referred to as assessment. Performance can be defined in several ways, including the model's growth of learning or the model's ability to improve (with) learning (to obtain a better score) with additional experience (for example, more rounds of training with additional samples of data) or accuracy of its results. One popular method of assessing a model or processes performance is called bootstrap sampling. This method examines performance on certain subsets of data, repeatedly generating results that can be used to calculate an estimate of accuracy (performance). The bootstrap sampling method takes a random sample of data, splits it into three files--a training file, a testing file, and a validation file. The model or process logic is developed based on the data in the training file and then evaluated (or tested) using the testing file. This tune and then test process is repeated until the data scientist is comfortable with the results of the tests. At that point, the model or process is again tested, this time using the validation file, and the results should provide a true indication of how it will perform. [box type="note" align="" class="" width=""]You can imagine using the bootstrap sampling method to develop program logic by analyzing test data to determine logic flows and then running (or testing) your logic against the test data file. Once you are satisfied that your logic handles all of the conditions and exceptions found in your testing data, you can run a final test on a new, never-before-seen data file for a final validation test. [/box] Cross-validation Cross-validation is a method for assessing a data science process performance. Mainly used with predictive modeling to estimate how accurately a model might perform in practice, one might see cross-validation used to check how a model will potentially generalize, in other words, how the model can apply what it infers from samples to an entire population (or recordset). With cross-validation, you identify a (known) dataset as your validation dataset on which training is run along with a dataset of unknown data (or first seen data) against which the model will be tested (this is known as your testing dataset). The objective is to ensure that problems such as overfitting (allowing non-inclusive information to influence results) are controlled and also provide an insight into how the model will generalize a real problem or on a real data file. The cross-validation process will consist of separating data into samples of similar subsets, performing the analysis on one subset (called the training set) and validating the analysis on the other subset (called the validation set or testing set). To reduce variability, multiple iterations (also called folds or rounds) of cross-validation are performed using different partitions, and the validation results are averaged over the rounds. Typically, a data scientist will use a models stability to determine the actual number of rounds of cross-validation that should be performed. Neural networks Neural networks are also called artificial neural networks (ANNs), and the objective is to solve problems in the same way that the human brain would. Google will provide the following explanation of ANN as stated in Neural Network Primer: Part I, by Maureen Caudill, AI Expert, Feb. 1989: [box type="note" align="" class="" width=""]A computing system made up of several simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs. [/box] To oversimplify the idea of neural networks, recall the concept of software encapsulation, and consider a computer program with an input layer, a processing layer, and an output layer. With this thought in mind, understand that neural networks are also organized in a network of these layers, usually with more than a single processing layer. Patterns are presented to the network by way of the input layer, which then communicates to one (or more) of the processing layers (where the actual processing is done). The processing layers then link to an output layer where the result is presented. Most neural networks will also contain some form of learning rule that modifies the weights of the connections (in other words, the network learns which processing nodes perform better and gives them a heavier weight) per the input patterns that it is presented with. In this way (in a sense), neural networks learn by example as a child learns to recognize a cat from being exposed to examples of cats. Boosting In a manner of speaking, boosting is a process generally accepted in data science for improving the accuracy of a weak learning data science process. [box type="note" align="" class="" width=""]Data science processes defined as weak learners are those that produce results that are only slightly better than if you would randomly guess the outcome. Weak learners are basically thresholds or a 1-level decision tree. [/box] Specifically, boosting is aimed at reducing bias and variance in supervised learning. What do we mean by bias and variance? Before going on further about boosting, let's take note of what we mean by bias and variance. Data scientists describe bias as a level of favoritism that is present in the data collection process, resulting in uneven, disingenuous results and can occur in a variety of different ways. A sampling method is called biased if it systematically favors some outcomes over others. A variance may be defined (by a data scientist) simply as the distance from a variable mean (or how far from the average a result is). The boosting method can be described as a data scientist repeatedly running through a data science process (that has been identified as a weak learning process), with each iteration running on different and random examples of data sampled from the original population recordset. All the results (or classifiers or residue) produced by each run are then combined into a single merged result (that is a gradient). This concept of using a random subset of the original recordset for each iteration originates from bootstrap sampling in bagging and has a similar variance-reducing effect on the combined model. In addition, some data scientists consider boosting a means to convert weak learners into strong ones; in fact, to some, the process of boosting simply means turning a weak learner into a strong learner. Lift In data science, the term lift compares the frequency of an observed pattern within a recordset or population with how frequently you might expect to see that same pattern occur within the data by chance or randomly. If the lift is very low, then typically, a data scientist will expect that there is a very good probability that the pattern identified is occurring just by chance. The larger the lift, the more likely it is that the pattern is real. Mode In statistics and data science, when a data scientist uses the term mode, he or she refers to the value that occurs most often within a sample of data. Mode is not calculated but is determined manually or through processing of the data. Outlier Outliers can be defined as follows: A data point that is way out of keeping with the others That piece of data that doesn't fit Either a very high value or a very low value Unusual observations within the data An observation point that is distant from all others Predictive modeling The development of statistical models and/or data science processes to predict future events is called predictive modeling. Big Data Again, we have some variation of the definition of big data. A large assemblage of data, data sets that are so large or complex that traditional data processing applications are inadequate, and data about every aspect of our lives have all been used to define or refer to big data. In 2001, then Gartner analyst Doug Laney introduced the 3V's concept. The 3V's, as per Laney, are volume, variety, and velocity. The V's make up the dimensionality of big data: volume (or the measurable amount of data), variety (meaning the number of types of data), and velocity (referring to the speed of processing or dealing with that data). Confidence interval The confidence interval is a range of values that a data scientist will specify around an estimate to indicate their margin of error, combined with a probability that a value will fall in that range. In other words, confidence intervals are good estimates of the unknown population parameter. Writing Although visualizations grab much more of the limelight when it comes to presenting the output or results of a data science process or predictive model, writing skills are still not only an important part of how a data scientist communicates but still considered an essential skill for all data scientists to be successful. Did we miss any of your favorite terms? Now that you are at the end of this post, we ask you again: On a scale of 1 to 30 (1 being the lowest and 30, the highest), how do you rate yourself as a data scientist? Why You Need to Know Statistics To Be a Good Data Scientist [interview] How data scientists test hypotheses and probability 6 Key Areas to focus on while transitioning to a Data Scientist role Soft skills every data scientist should teach their child
Read more
  • 0
  • 0
  • 8403

article-image-polycloud-a-better-alternative-to-cloud-agnosticism
Richard Gall
16 May 2018
3 min read
Save for later

Polycloud: a better alternative to cloud agnosticism

Richard Gall
16 May 2018
3 min read
What is polycloud? Polycloud is an emerging cloud strategy that is starting to take hold across a range of organizations. The concept is actually pretty simple: instead of using a single cloud vendor, you use multiple vendors. By doing this, you can develop a customized cloud solution that is suited to your needs. For example, you might use AWS for the bulk of your services and infrastructure, but decide to use Google's cloud for its machine learning capabilities. Polycloud has emerged because of the intensely competitive nature of the cloud space today. All three major vendors - AWS, Azure, and Google Cloud - don't particularly differentiate their products. The core features are pretty much the same across the market. Of course, there are certain subtle differences between each solution, as the example above demonstrates; taking a polycloud approach means you can leverage these differences rather than compromising with your vendor of choice. What's the difference between a polycloud approach and a cloud agnostic approach? You might be thinking that polycloud sounds like cloud agnosticism. And while there are clearly many similarities, the differences between the two are very important. Cloud agnosticism aims for a certain degree of portability across different cloud solutions. This can, of course, be extremely expensive. It also adds a lot of complexity, especially in how you orchestrate deployments across different cloud providers. True, there are times when cloud agnosticism might work for you; if you're not using the services being provided to you, then yes, cloud agnosticism might be the way to go. However, in many (possibly most) cases, cloud agnosticism makes life harder. Polycloud makes it a hell of a lot easier. In fact, it ultimately does what many organizations have been trying to do with a cloud agnostic strategy. It takes the parts you want from each solution and builds it around what you need. Perhaps one of the key benefits of a polycloud approach is that it gives more power back to users. Your strategic thinking is no longer limited to what AWS, Azure or Google offers - you can instead start with your needs and build the solution around that. How quickly is polycloud being adopted? Polycloud first featured in Thoughtworks' Radar in November 2017. At that point it was in the 'assess' stage of Thoughtworks' cycle; this means it's simply worth exploring and investigating in more detail. However, in its May 2018 Radar report, polycloud had moved into the 'trial' phase. This means it is seen as being an approach worth adopting. It will be worth watching the polycloud trend closely over the next few months to see how it evolves. There's a good chance that we'll see it come to replace cloud agnosticism. Equally, it's likely to impact the way AWS, Azure and Google respond. In many ways, the trend a reaction to the way the market has evolved; it may force the big players in the market to evolve what they offer to customers and clients. Read next Serverless computing wars: AWS Lambdas vs Azure Functions How to run Lambda functions on AWS Greengrass
Read more
  • 0
  • 0
  • 22179

article-image-beyondcorp-is-transforming-enterprise-security
Richard Gall
16 May 2018
3 min read
Save for later

BeyondCorp is transforming enterprise security

Richard Gall
16 May 2018
3 min read
What is BeyondCorp? Beyondcorp is an approach to cloud security developed by Google. It is a zero trust security framework that not only tackles many of today's cyber security challenges, it also helps to improve accessibility for employees. As remote, multi-device working shifts the way we work, it's a framework that might just be future proof. The principle behind it is a pragmatic one: dispensing with the traditional notion of a workplace network and using a public network instead. By moving away from the concept of a software perimeter, BeyondCorp makes it much more difficult for malicious attackers to penetrate your network. You're no longer inside or outside the network; there are different permissions for different services. While these are accessible to those that have the relevant permissions, the lack of perimeter makes life very difficult for cyber criminals. Read now: Google employees quit over company’s continued Artificial Intelligence ties with the Pentagon How does BeyondCorp work? BeyondCorp works by focusing on users and devices rather than networks and locations. It works through a device inventory service. This essentially logs information about the user accessing the service, who they are, and what device they're using. Google explained the concept in detail back in 2016: "Unlike the conventional perimeter security model, BeyondCorp doesn’t gate access to services and tools based on a user’s physical location or the originating network; instead, access policies are based on information about a device, its state, and its associated user." Of course, BeyondCorp encompasses a whole range of security practices. Implementation requires a good deal of alignment and effective internal communication. That's one of the challenges the Google team had when implementing the framework - getting the communication and buy-in from the whole organization without radically disrupting how people work. Is BeyondCorp being widely adopted by enterprises? Google has been developing BeyondCorp for some time. In fact, the concept was a response to the Operation Aurora cyber attack back in 2009. This isn't a new approach to system security, but it is only recently becoming more accessible to other organizations. We're starting to see a number of software companies offering what you might call BeyondCorp-as-a-Service. Duo is one such service: "Reliable, secure application access begins with trust, or a lack thereof" goes the (somewhat clunky) copy on their homepage. Elsewhere, ScaleFT also offer BeyondCorp services. Services like those offered by Duo and ScaleFT highlight that there is clearly an obvious demand for this type of security framework. But it is a nascent trend. Despite having been within Google for almost a decade, Thoughtworks' Radar first picked up on BeyondCorp in May 2018. Even then, ThoughtWorks placed it in the 'assess' stage. That means that it is still too early to adopt. It should simply be explored as a potential security option in the near future. Read next Amazon S3 Security access and policies IoT Forensics: Security in an always connected world where things talk
Read more
  • 0
  • 0
  • 4931

article-image-what-are-lightweight-architecture-decision-records
Richard Gall
16 May 2018
4 min read
Save for later

What are lightweight Architecture Decision Records?

Richard Gall
16 May 2018
4 min read
Architecture Decision Records (ADRs) document all the decisions made about software. Every change is recorded in a plain text file sitting inside a version control system (like GitHub). The record should be a complement to the information you can find in a version control system. The ADR provides context and information around every decision made about a piece of software. Why are lightweight Architecture Decision Records needed? We are always making decisions when we build software. Even the simplest piece of software will have required the engineer to take a number of different decisions. Often these decisions aren't obvious. If you've ever had to work with code written by someone else you're probably familiar with this sort of situation. You might have even found that when you come across someone else's code, you need to make a further decision. Either you can simply accept what has been written, and merely surmise and assume why it has been done in the way that it, or you can decide to change it, based on your own judgement. Neither option is ideal. This was what Michael Nygard identified in this blog post in 2011. This was when the concept of Architecture Decision Records first emerged. An ADR should prevent situations like this arising. That makes life easier for you. More importantly, it should mean that every decision is transparent to everyone involved. So, instead of blindly accepting something or immediately changing it, you can simply check the Architecture Decision Record. This will then inform how you proceed. Perhaps you need to make a change. But perhaps you also now understand the context of why something was built in the way it was. Any questions you might have should be explicitly answered in the architecture decision record. So, when you start asking yourself why has she done it like that? instead of floundering helplessly, you can find the answer in the ADR. Why lightweight Architecture Decision Records now? Architecture Decision Records aren't a new thing. Nygard wrote his post all the way back in 2011, after all. But the fact remains that the context from which Nygard was writing in 2011 was very specific. Today it is mainstream. As we've moved away from monolithic architecture towards microservices or serverless, decision making has become more and more important in software engineering. This is a point that is well explained in a blog post here: "The rise of lean development and microservices... complicates the ability to communicate architecture decisions. While these concepts are not inherently opposed to documentation, their processes often fail to effectively capture decision-making processes and reasoning. Another possible inefficiency when recording decisions is bad or out-of-date documentation. It's often a herculean effort to keep large, complex architecture documents current, making maintenance one of the most common barriers to entry." ADRs are, then, a way of managing the complexity in modern software engineering. They are a response to a fundamental need to better communicate decisions. Most importantly, they codify decision-making within the development process. It is when they are lightweight and sit within the project itself that they are most effective. Architecture Decision Record template Architecture Decision Records must follow a template. Not only does that mean everyone is working off the same page, it also means people are actually more likely to document their decisions. Think about it: if you're asked to note how you decide to do something without any guidelines, you're probably not going to do it at all. Below, you'll find an Architecture Decision Record example template. There are a number of different templates you can use, but it's probably best to sit down with your team and agree on what needs to be captured. An Architecture Decision Record example Date Decision makers [who was involved in the decision taken] Category [which part of the architecture does this decision pertain to] Contextual outline [Explain why this decision was made. Outline the key considerations and assumptions at play] Impact consequences [What does this decision mean for the project? What should someone reading this be aware of in terms of future decisions?] As I've already noted, there are a huge number of ways you may want to approach this. Use this as a starting point. Read next Enterprise Architecture Concepts Reactive Programming and the Flux Architecture
Read more
  • 0
  • 0
  • 8247
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at €18.99/month. Cancel anytime
article-image-what-can-google-duplex-do-for-businesses
Natasha Mathur
16 May 2018
9 min read
Save for later

What can Google Duplex do for businesses?

Natasha Mathur
16 May 2018
9 min read
When talking about the capabilities of AI-driven digital assistants, the most talked about issue is their inability to converse in a way a real human does. The robotic tone of the virtual assistants has been limiting them from imitating real humans for a long time. And it’s not just the flat monotone. It’s about understanding the nuances of the language, pitches, intonations, sarcasm, and a lot more. Now, what if there emerges a technology that is capable of sounding and behaving almost human? Well, look no further, Google Duplex is here to dominate the world of digital assistants. Google introduced the new Duplex at Google I/O 2018, their annual developer conference, last week. But, what exactly is it? Google Duplex is a newly added feature to the famed Google assistant. Adding to the capabilities of Google assistant, it is also able to make phone calls for the users, and imitate human natural conversation almost perfectly to get the day-to-day tasks ( such as booking table reservations, hair salon appointments, etc. ) done in an easy manner. It includes pause-fillers and phrases such as “um”, “uh-huh “, and “erm” to make the conversation sound as natural as possible. Don’t believe me? Check out the audio yourself! [audio mp3="https://hub.packtpub.com/wp-content/uploads/2018/05/Google-Duplex-hair-salon.mp3"][/audio]  Google Duplex booking appointments at a hair salon [audio mp3="https://hub.packtpub.com/wp-content/uploads/2018/05/Google-Duplex-table-reservation.mp3"][/audio]  Google Duplex making table reservations at a restaurant The demo call recording video of the assistant and the business employee, presented by Sundar Pichai, Google’s CEO, during the opening keynote, befuddled the entire world about who’s the assistant and who’s the human, making it go noticeably viral. A lot of questions are buzzing around whether Google Duplex just passed the Turing Test. The Turing Test assesses a machine’s ability to present intelligence closer or equivalent to that of a human being. Did the new human sounding robot assistant pass the Turing test yet? No, but it’s certainly the voice AI that has come closest to passing it. Now how does Google Duplex work? It’s quite simple. Google Duplex finds out the information ( you need ) that isn’t out there on the internet by making a direct phone call. For instance, a restaurant has shifted location and the new address is nowhere to be found online. Google Duplex will call the restaurant and check on their new address for you. The system comes with a self-monitoring capability, helping it recognize complex tasks that it cannot accomplish on its own. Such cases are signaled to a human operator, who then takes care of the task. To get a bit technical, Google Duplex makes use of Recurrent Neural Networks ( RNNs ) which are created using TensorFlow extended ( TFX ), a machine learning platform. Duplex’s RNNs are trained using the data anonymization technique on phone conversation data. Data anonymization helps with protecting the identity of a company or an individual by removing the data sets related to them. The output of Google’s Automatic speech recognition technology, conversation history and different parameters of the conversation are used by the network. The model also makes use of hyperparameter optimization from TFX which further enhances the model. But, how does it sound natural? Google uses concatenative text to speech ( TTS ) along with synthesis TTS engine ( using Tacotron and WaveNet ) to control the intonation depending on different circumstances. Concatenative TTS is a technique that converts normal text into speech by concatenating or linking together the recorded speech pieces. Synthesis TTS engine helps developers modify the speech rate, volume, and pitch of the synthesized output. Including speech disfluencies ( “hmm”s, “erm”s, and “uh”s ) makes the Duplex sound more human. These speech disfluencies are added when very different sound units are combined in the concatenative TTS or adding synthetic waits. This allows the system to signal in a natural way that it is still processing ( equivalent to what humans do when trying to sort out their thoughts ). Also, the delay or latency should match people’s expectations. Duplex is capable of figuring out when to give slow or fast responses using low-confidence models or faster approximations. Google also found out that including more latency helps with making the conversation sound more natural. Some potential applications of Google Duplex for businesses Now that we’ve covered the what and how of this new technology, let’s look at five potential applications of Google Duplex in the immediate future. Customer Service Basic forms of AI using natural language processing ( NLP ), such as chatbots and the existing voice assistants such as Siri and Alexa are already in use within the customer care industry. Google Duplex paves the way for an even more interactive form of engaging customers and gaining information, given its spectacular human sounding capability. According to Gartner, “By 2018, 30% of our interactions with technology will be through "conversations" with smart machines”. With Google Duplex, being the latest smart machine introduced to the world, the basic operations of the customer service industry will become easier, more manageable and efficient. From providing quick solutions to the initial customer support problems and delivering internal services to the employees, Google Duplex perfectly fills the bill. And it will only get better with further advances in NLP. So far chatbots and digital assistants have been miserable at handling irate customers. I can imagine Google Duplex in John Legend’s smooth voice calming down an angry customer or even making successful sales pitches to potential leads with all its charm and suave! Of course, Duplex must undergo the right customer management training with a massive amount of quality data on what good and bad handling look like before it is ready for such a challenge. Other areas of customer service where Google Duplex can play a major role is in IT support. Instead of connecting with the human operator, the user will first get connected to Google Duplex. Thus, making the entire experience friendly and personalized from the user perspective and saving major costs for organizations. HR Department Google Duplex can also extend a helping hand in the HR department. The preliminary rounds of talent acquisition where hiring executives make phone calls to their respective candidates could be handled by Google Duplex provided it gets the right training. Making note of the basic qualifications, candidate details, and scheduling interviews are all the functions that Google Duplex should be able to do effectively. The Google Assistant can collect the information and then further rounds can be conducted by the human HR personnel. This could greatly cut down on the time expended by HR executives on the first few rounds of shortlisting. This means they are free to focus their time on other strategically important areas of hiring. Personal assistants and productivity As presented at Google I/O 2018, Google Duplex is capable of booking appointments at hair salons, booking table reservations and finding out holiday hours over the phone. It is not a stretch to therefore assume that it can also order takeaway food over a phone call, check with the delivery man regarding the order, cancel appointments, make business inquiries, etc. Apart from that, it’s a great aid for people with hearing loss issues as well as people who do not speak the local language by allowing them to carry out tasks on phone. Healthcare Industry There is already enough talk surrounding the use of Alexa, Siri, and other voice assistants in healthcare. Google Duplex is another new addition to the family. With its natural way of conversing, Duplex can: Let patients know their wait time for emergency rooms. Check with the hospital regarding their health appointments. Order the necessary equipment for hospital use. Another allied area is elder care. Google Duplex could help reduce ailments related to loneliness by engaging with the users at a more human level. It could also assist with preventive care and in the management of lifestyle diseases such as diabetes by ensuring patients continue their med intake, keep their appointments, provide emergency first aid help, call 911 etc. Real Estate Industry Duplex enabled Google Assistants will help make realtors’ task easy. Duplex can help call potential sellers and buyers, thereby, making it easy for realtors to select the respective customers. The conversation between Google Duplex ( helping a realtor ) and a customer wanting to buy a house can look something like this: Google Duplex: Hi! I heard you are house hunting. Are you looking to buy or sell a property? Customer: Hey, I’m looking to buy a home in the Washington area. Google Duplex: That’s great! What part of Washington are you looking in for? Customer:  I’m looking for a house in Seattle. 3 bedrooms and 3 baths would be fine. Google Duplex: Sure, umm, may I know your budget? Customer: Somewhere between $749,000 to $850,000, is that fine? Google Duplex: Ahh okay sure, I’ve made a note and I’ll call you once I find the right matches. Customer: Yeah, sure. Google Duplex: okay, thanks. Customer: Thanks, Bye! Google Duplex then makes a note of the details on the realtor’s phone, thereby, narrowing down the efforts made by realtors on cold calling the potential sellers to a great extent. At the same time, the broker will also receive an email with the consumer’s details and contact information for a follow-up. Every rose has its thorns. What’s Duplex’s thorny issue? With all the good hype surrounding Google Duplex, there have been some controversies regarding the ethicality of Google Duplex. Some people have questions and mixed reactions about Google Duplex fooling people of one’s identity as the voice of the Duplex differs significantly from that of a robot. A lot of talk surrounding this issue is trending on several twitter threads. It has hushed away these questions by saying how ‘transparency in technology’ is important and they are ‘designing this feature with disclosure built-in’ which will help in identifying the system. Google also mentioned how any feedback that people have regarding their new product. Google successfully managed to awe people across the globe with their new and innovative Google Duplex. But there is a still a long way to go even though Google has already taken a step ahead in an effort to better the human relationships with the machines. If you enjoyed reading this article and want to know more, check out the official Google Duplex blog post. Google’s Android Things, developer preview 8: First look Google News’ AI revolution strikes balance between personalization and the bigger picture Android P new features: artificial intelligence, digital wellbeing, and simplicity  
Read more
  • 0
  • 0
  • 6615

article-image-cognitive-iot-how-artificial-intelligence-is-remoulding-industrial-and-consumer-iot
Savia Lobo
15 May 2018
8 min read
Save for later

Cognitive IoT: How Artificial Intelligence is remoulding Industrial and Consumer IoT

Savia Lobo
15 May 2018
8 min read
Internet of Things (IoT) has gained a huge traction due to the ability to gather data from sensors embedded within a variety of IoT devices including Close-circuit cameras, vehicles, smart homes, smart appliances, and many more. Think of IoT as a network of devices which gathers raw and real-time data, analyzes them, and provides desired outputs that benefit the users. But what after the data is analyzed? What is done with the analyzed report? The data has to be acted upon. Here, Artificial Intelligence can do the needful. AI can get hold of all that data crunched by IoT devices and act on it in a successful and organized manner. Industries that already use IoT devices can automate certain mundane workflows such as documentation, machine maintenance notification alert, and so on when powered by AI. Intelligent things with AI-backed IoT The saying, ‘With great power come great responsibilities’, is true for AI powered IoT.AI backed IoT devices can make complex decisions, perform self-learning, and can carry out autonomous decision making. One can group IoT applications broadly into two categories based on who the end user is, i.e. Industrial IoT for enterprises and consumer IoT for individual consumers. Let’s look into some of the major domains that AI has enhanced. 1. Industrial IoT Also known as the IIoT, IoT has impacted industries by bringing in unprecedented opportunities. However, it has also brought in a wave of new risks to businesses. IIoT provides the internet with a new ability to control machines, factories and the industrial infrastructure. Some of the characteristics of IIoT include, Improved Interoperability where the machines and sensors communicate via IoT Availability of Transparent information with the presence of more sensors, which means abundance of information. Autonomous decision making now lies in the hands of the IoT devices, where they can detect emergency situations, for instance when a machine servicing is required and can act on it immediately.    Manufacturing Manufacturing is by far the biggest industry affected by the IoT wave. According to a report, ‘global manufacturers will invest $70 billion on IoT solutions in 2020, which is up from the $29 billion they spent in 2015’.Let’s see how some of the processes in manufacturing get a lift with AI enabled IoT: Detection of machine health using Predictive maintenance : Predictive maintenance involves collection and evaluation of data from machines in order to increase efficiency and optimize the maintenance processes. With predictive maintenance, manufacturers can determine the condition of their equipments and also predict when machines need maintenance. A startup named Konux, based in Munich, Germany, has developed a machine-learning powered monitoring system for train switches. The Konux switch sensor can be retrofitted onto existing train networks, providing real-time monitoring of track conditions and rolling stock. Data is transmitted wirelessly to the Konux Kora platform, which uses predictive algorithms based on machine learning to alert staff to specific problems as well as drive recommendations for maintenance. Supply Chain Optimization : With an IoT-optimized supply chain, manufacturers can get hold of real-time data and analyze issues to act upon them before the onset of any major problem. This in turn reduces inventory and capital requirements. In order to track a product, companies have set up smart shelves, which keep a record of when the product has been removed, the total no. of products, and so on. This smart shelf is connected to their entire network which is linked to their planning and demand sensing engine. Here, the AI powered decision support systems help to translate those demand signals into production and order processes. Read ‘How AI is transforming the manufacturing Industry’ for a more indepth look at AI’s impact on the manufacturing industry. Retail Adoption of IIoT in retail has upped the game for online retailers. Retail stores now comprise of in-store advertising and gesture walls. These walls help customers search merchandize, offers, and buy products with simple gestures. Retailers also have Automated Checkouts, or most simply self-checkout kiosks. This enables customers to avoid long queues and pay for products using a mobile app based payments system which scans the QR code embedded on the products, contactless payments or other means. With IoT enabled sensors, retailers can now extract insights about the most popular areas people pass by and where they stop to see the merchandize. Retailers can then send promotional text messages, discount coupons directly on the customer’s phone while they are in the store’s vicinity. For instance, Apple’s iBeacon enables devices to alert apps and websites about customer location. Retailers have also adopted Inventory Optimizations by using digital shelf and RFID techniques for managing their inventories effectively. Healthcare IoT in healthcare is proving to be a boon for patients by decreasing costs and reducing multiple visits to doctors. With these healthcare solutions, patient monitoring can be done in real-time. Due to this real-time data, diseases can be treated well in advance before they reach a malignant stage. These IoT enabled healthcare solutions provide accurate collection of data, automated workflows which are combined with data driven decisions.This cuts down on waste, reducing system costs and most importantly minimizes errors. Also, creation and management of drugs is a major expenditure in the healthcare industry. With IoT processes and devices, it is possible to manage these costs better. A new generation of “smart pills” is allowing healthcare organizations to ensure that a patient takes his or her medication, while also collecting other vital data. Apart from these major applications of IoT in the Industrial sectors, it has also affected sectors such as telecommunications, energy, and in the Government. Next up, we move on to explaining how AI backed IoT can affect and enhance the consumer domain. 2. Consumer IoT Consumers go for services that provide them with an easy way to do mundane tasks. Let us have a look at some examples where AI has intelligently assisted IoT for consumers benefit. Connected Vehicles Connected vehicles are vehicles that use any of a number of different communication technologies to communicate with the driver, other cars on the road (vehicle-to-vehicle [V2V]): This tech helps wirelessly exchange information about the speed and position of surrounding vehicles. This helps in avoiding crashes, ease traffic congestion, and improve the environment. roadside infrastructure (vehicle-to-infrastructure [V2I]): These technologies capture vehicle-generated traffic data wirelessly and provide information such as warnings from the infrastructure to the vehicle that inform the driver of safety, mobility, or environment-related conditions. the “Cloud” [V2C]: A Vehicle-to-Cloud infrastructure integrates NaaS (Network As A Service) into the automotive ecosystem and allows provisioning of vehicle-based services for automobile user. Connected homes These AI enabled IoT devices and services can automatically respond to preset rules, be remotely accessed and managed by mobile apps or a browser, and send alerts or messages to the user. For instance, Google Home, with a built-in Google Assistant, controls home and helps people with lists, translation, news, music, calendar and much more. Google Home can also answer any questions asked to it. This is because of Google’s huge Knowledge Graph that it is connected to. Similarly, Amazon’s Echo, a voice-controlled speaker and Apple’s homepod also assist in collecting data they get via voice. The AI can also get all devices within the home connected, with the help of Wi-Fi. With the latest IFTTT technology, your Google Home can talk to Nest and adjust the temperature of your home as per your requirement or the external temperature change. Health and lifestyle AI integrated with predictive analytics within the embedded devices such as fitness apps, health trackers, diet planners, and so on, makes them intelligent and personalized. For instance, Fitbit coach app paired with the Fitbit has a huge database. The app uses complex algorithms to extract meaningful information from the user data. This data is further used to recommend highly-tailored workout plans. Also, AthGene, uses ML algorithms to convert genetic information into valuable insights for customizing fitness regimen, diet plans, and lifestyle changes for users. IoT was only about devices monitoring data and giving insights in real-time. But AI added the efficiency factor, and also gave the power to these systems to take decisions. AI with IoT has a bright future; one can expect smart machines managed via Echo or Google Home in the future. Read Next How Google’s DeepMind is creating images with artificial intelligence Customer Relationship management just got better with Artificial Intelligence 5 Ways Artificial Intelligence is Transforming the Gaming Industry
Read more
  • 0
  • 0
  • 6890

article-image-is-your-web-design-responsive
Savia Lobo
15 May 2018
12 min read
Save for later

Is your web design responsive?

Savia Lobo
15 May 2018
12 min read
Today we will explain what a responsive web design is, how it benefits websites, and what the core concepts are. The topics covered are: Responsive design philosophy, principles, grid & columns Smooth user experience & user friendly website Understanding responsive grid systems Adaptive design and methodologies Elegant mobile experience This article is an excerpt taken from the book, Responsive Web Design by Example, written by Frahaan Hussain. Responsive design philosophy There was a time when most web surfing occurred on a computer with a standard-sized/ratio monitor. It was more than adequate to create websites with a non-responsive layout in mind. But over the last 10 years, there has been an exponential boom of new devices in a plethora of form factors, from mobile phones, tablets, watches and a wide range of screen sizes. This growth has created a huge fragmentation problem, so creating websites with a single layout is no longer acceptable. A website with a lot of content that works great on desktops doesn't work very well on a mobile device that has a significantly smaller screen. Such content is unreadable, forcing the user to zoom in and out constantly. One might try making everything bigger so it looks good on mobiles, but then on a desktop, the content doesn't take advantage of the immense real estate offered by bigger screens. Responsive Web Design is a method that allows the design to respond based on the user's input and environment and thus based on the size of the screen, the device, and its orientation. This philosophy blends elements of flexible grids and layouts, images, and media queries in CSS. Enter Responsive Web Design. This alleviates this problem by allowing developers and designers to create websites that adapt to all screen sizes/ratios. There are various approaches that different websites take, but the core concept is illustrated in the following figure: The preceding figure shows how the same website's layout can be adapted to suit different devices. On the desktop, there is a lot more real estate, so the content is bigger and more can fit on a single row. But, as the screen size shrinks and its orientation changes, the content readjusts itself to accommodate this change. This provides a seamless and elegant experience for the user on all form factors. If you look closely at the preceding figure and at modern websites, you will see a grid that the content conforms to. The grid is used to lay out the content of a website, and both of these elements go hand in hand. This grid system is one of the most important aspects of how Responsive Web Design works. Responsive design principles This section will cover the main principles behind designing responsive websites. Though these aren't set in stone and will change over time, they will provide a great foundation. Should you go Responsive or Adaptive? Responsive designs constantly change website layouts depending on their size and orientation. A single pixel resize will tend to have an effect on the layout, usually not by a lot. Adaptive schemes, on the other hand, have preset layouts, which are loaded depending on the size of the screen. This technique doesn't look as fluid and seamless as do responsive designs. Modern-day Responsive Web Design usually incorporates both methods. Set layouts will be provided, as can be seen in the previous figure. But any changes made to a website's size will have an impact in real time through responsive scaling. What are Breakpoints? Breakpoints are points at which a website's layout is no longer fit for the screen size, device, and/or orientation, and we are able to use different and unique layouts to accommodate the various changes that can occur to screens. When these points occur, the current layout is switched to a more suitable layout. For example, a mobile device in portrait mode will not effectively be able to use a layout that is designed for a widescreen desktop display; this just isn't possible. However, by using breakpoints a single website can serve many screen variations whilst making the website feel like it was designed with the user's current screen, device, and/or orientation in mind. This does not occur when reloading the web page, but content moves around dynamically and is scaled accordingly. Without breakpoints, the website would appear with the same layout on all form factors and browser sizes, which using the example we just mentioned, would not be fit for purpose. These breakpoints usually occur when the width of the browser changes and falls into the category of another more appropriate layout. There are a few fundamentals that should be mentioned regarding the philosophy of Responsive Web Design: Why is screen resolution important for responsive design? This is immensely influential in responsive design. The first thought for many designers is to design based on the resolution of the screen. But modern-day phones have resolutions of 1080p and beyond, which for the most part is still the de facto standard for desktops with some exceptions in 4K and ultrawide displays. This would prevent us from fully targeting all devices, as there is so much crossover in resolutions between devices. That is the reason why pixel density is very important when deciding which layout should be used as a 5-inch 1080p mobile display will be cramming the pixels in a lot closer than a 32-inch 1080p display. They both have the same resolution for the mobile device and they have a significantly higher pixel density, which helps distinguish between the device types. The viewport should also be taken into consideration, which is the user's visible area of a web page. This would allow us to rearrange content based on how much content should be displayed. What are media queries? These are amazing facets within CSS that allow us to actually detect changes in a screen such as its size and an event device type. These are the things used to specify code for a specific layout, such as a mobile or desktop display. You can think of media queries as conditional statements, just as an "if" statement would only run a piece of code if the condition was true. A media query is the same, it's far more limited, but as are many things in CSS. I'm positive you will have used a website and noticed that it looks different on a computer compared to a mobile phone, or even a tablet. This is thanks to the use of breakpoints, which are very similar to conditional statements in other languages such as C++. When a certain condition is met, such as screen size range, or, change in form factor, different CSS is applied to provide a better-suited layout. What are Relative units? Relative units take into account the other content and more specifically the content's size, whereas static units do not and have an absolute value regardless of the amount of content. If relative units are not used then static units would be used, which essentially lays the content using fixed units such as pixels. With this method, a box with a width of 400px on an 800px screen would take half the width. But, if the screen size changes to 300px, the box will now be partially off-screen. Again, this would not provide the reader with that seamless experience, which we aim to provide. The units simply display your content relative to everything else, or, more specifically, the screen size or viewport. This allows us, as creators, to display content consistently. Take the previous example, if we would like to display the box at half the screen width, on an 800px screen the box would be 400px wide, and on a 600px screen the box would be 300px wide. Using percentages we can set the width to 50%, which forces the box to always be half the width of its parent container, making its size relative to the rest of the page's content. Why Maximum and minimum values are important? Scaling our content is greatly dependent on the screen size. But with screens such as ultrawide monitors, scaling the content may make it too big, or even too small, on mobile devices. Using maximum and minimum values, we are able to set upper and lower limits providing us with readable and clear results. What are Nested objects? If we displayed every object individually, we would have to make them all adjust accordingly, but nesting allows us to wrap elements using containers. Nested objects are like a paragraph tag, as they contain text, and any changes made to the paragraph tag, such as its position or color, also affect its contents. Objects nested within each other are affected by any change made to their parent containers. An object can be anything from text and images to HTML tags/elements. Take a look at the following example: In this example, there are four elements—a div, paragraph, span, and image tag. The paragraph, span, and image tags are nested within the div tag. If the div tag's maximum width and background color were changed, this would affect all its child objects/tags. But if we were to make a change to the paragraph tag, such as changing its text color, this would not affect any other sibling tags or its parent tag. It would only have an effect on its contents/objects. So, for example, if a container is moved or scaled, the content within the container is also updated. This is where pixels come in use. You may not always want a container to be displayed 10% from the right as, on mobile devices, 10% equates to a lot of real estate potentially being wasted; you could specify 50px instead for example. Should you go Mobile first or desktop first? You can design a website from a small screen such as a phone and scale it up or go the other way round and design it with a large screen in mind. There is actually no right or wrong answer. Depending on the intended target audience and the website's purpose, this will become clear to you. Usually, considering both angles at the same time is the best route to go down. Most responsive frameworks on the market have been designed with a mobile-first philosophy, but that doesn't mean you cannot use it for a desktop-first design; it is on you as the designer to decide how content should be displayed. Should you use Bitmaps or vectors for your images? Bitmaps are great for images with a lot of detail, such as backgrounds and usually logos. Common bitmap formats include .png and .jpg. But these images can be large in file size and require more bandwidth and time to load. On desktop devices, this isn't too much of a problem, but on mobile devices that are heavily reliant on cellular services that don't always provide unlimited data, this can be problematic. Also, when scaling bitmaps, there is a loss in quality, which results in jagged and blurry images. Vectors, on the other hand, are small in size and don't lose quality when scaling. I know you'll be tempted to scream, "Hail vectors!" at this book, but they do have their drawbacks. They are only useful for simple content such as icons. Also, some older browsers do not fully support vectors. Again there is no "right choice"; depending on the content to be displayed, bitmaps or vectors should be used. Understanding Responsive grids and columns The grid system is one of the universal concepts of Responsive Web Design, regardless of the framework a website is built upon. To put it simply, websites are split into rows and columns, and if an object/element occupies half the number of columns, it will always occupy that many regardless of the screen's size. So an element that occupies 3 of the 12 rows will occupy 25% of the width of its parent container, hence providing a responsive design. This is great for small variations in screen sizes, but when a website is viewed on platforms varying from desktops to mobiles, then breakpoints are introduced as covered previously. Though there is no fixed number of columns that a responsive website should have, 12 is a common number used by some of the most popular and widespread frameworks. A framework in this context is anything built on top of the built-in web features. JavaScript is a web feature, but jQuery is a framework built on top of that to allow easier manipulation of the website using prewritten libraries/code. Though a framework isn't absolutely necessary, neither is using an off-the-shelf web browser. You could create your own, but it would be an immense waste of time, and the case for using a responsive framework is essentially the same. The following is an example of a basic responsive grid: Rows allow us as developers to group content together, though there will be a fixed number of columns, not all columns have to be filled to go to the next row. A new row can be used explicitly, as can be seen in the following example: This may be different to how you have developed websites in the past, but if there is anything you are unsure about don’t worry, as things will become clearer when we start working on projects in future chapters. To summarize, we covered responsive design philosophy and principles that are essential to creating an intuitive user experience. If you have enjoyed this excerpt, check out Responsive Web Design by Example to learn how to build engaging responsive websites. What UX designers can teach Machine Learning Engineers? To start with: Model Interpretability 5 things to consider when developing an eCommerce website Responsive Web Design with WordPress  
Read more
  • 0
  • 0
  • 10016

article-image-top-frameworks-for-building-your-progressive-web-application-pwa
Sugandha Lahoti
15 May 2018
6 min read
Save for later

Top frameworks for building your Progressive Web Apps (PWA)

Sugandha Lahoti
15 May 2018
6 min read
The hype and rise of progressive web apps are tremendous. A PWA is basically a web application that feels like a native application to the user. By making your app a PWA, not only do you acquire new users, but you can also retain them for longer. Here’s a quick rundown of all things good about a PWA. Reliable: Loads instantly even under poor network conditions. Lighting fast and app-like: Responds to the user’s actions with speed and with a smooth interaction. Engaging and responsive: Gives the feeling that it was made specifically for that device, but it should be able to work across all platforms. Protected and secure: Served over HTTPS to make sure the contents of the app are not messed with. If you’re not already developing your next app as a PWA, here are 5 reasons why you should do that asap. And if you’re confused about choosing the best framework for developing your PWA, here are the top 3 frameworks available to make your next app a PWA. Ionic Ionic is one of the most popular frameworks for building a progressive web app. Let’s look at a few reasons why you should choose Ionic as your PWA framework Free and open-source:  Ionic is open source, and licensed under MIT. Open-source means developers can manage the code structure easily, saving time, money and efforts. They also have a worldwide community forum to connect with other Ionic developers, ask questions, and help out others. Cross-platform and one-codebase: Ionic allows seamless building of apps across popular operating systems, such as Android, iOS and Windows. It has a one codebase feature. This means apps are deployed through Apache Cordova with a single code base, and the application adapts automatically to the device it is functioning in. Rich UI: Ionic is equipped with pre-built components that are used to customize design themes and elements. It is based on SASS UI, with rich features to create fast, robust, interactive, native-like applications. Powerful functionality: Ionic is supported by Angular. The component API of Angular helps developers create interactive hybrid and web apps. Ionic is equipped with Cordova Plugins for accessing various native features, like Camera, GPS, and so on. It also features a powerful CLI for building, testing and deploying apps across multiple platforms. Read our Hybrid Mobile Development with Ionic to build a complete, professional-quality, hybrid mobile application with Ionic. You can also checkout Hybrid Mobile apps: What you need to know, for a quick rundown of all that is to know about a Hybrid mobile app. Polymer Google’s Polymer App Toolbox is another contender for the development of PWAs. It is a collection of web components, tools, and templates for building Progressive Web Apps. Blends PWAs with Web components Polymer allows developers to architect a component-based web app using Polymer and Web Components. Web components can form encapsulated and reusable custom HTML elements. They are independent of the frameworks because they are made of pure HTML/CSS/JS, unlike framework-dependent UI components in React/Angular. The web components are provided through a light-weight Polymer Library for creating framework-independent, custom components. More features include: Responsive design using the app layout components. Modular routing using the <app-route> elements. Localization with <app-localize-behavior>. Turnkey support for local storage with app storage elements. Offline caching as a progressive enhancement, using service workers. Build tooling to support serving the app multiple ways: unbundled for delivery over HTTP/2 with server push, and bundled for delivery over HTTP/1. Each component whether used separately or together can be used to build a full-featured Progressive web app. Most importantly, each component is additive. For a simple app one only needs the app-layout. As it gets more complicated, developers can add routing, offline caching, and a high-performance server as required. Read our Getting Started with Polymer book to create responsive web apps using Polymer. Angular Angular, probably the most popular front-end web application platform, can also be used to make robust, reliable, and responsive PWAs. Before the release of version 5, supporting progressive web apps in Angular required a lot of expertise on the developers’ part.Version 5 comes equipped with a new version of the Angular Service Worker for built-in PWA support. Angular 6 (released a few days back) has two new CLI commands. Both these versions make it very simple to make web application downloadable and installable, just like a native mobile application. Service Worker Updates With Angular 5 the development of Service Workers is becoming significantly easier. By using Angular CLI developers can choose to add Service Worker functionality by default. The Angular Service Worker functionality is provided by the module @angular/service-worker. Service worker can power up an application by only providing some JSON configuration instead of writing the code manually. The key difference with other service worker generators (like Workbox, sw-precache) is the fact, that you do not re-generate the service worker file itself, you only update its control file. New CLI commands Angular 6, also introduces two new commands apart from the service worker updates. The first, ng update, is a CLI command for updating dependencies and code. The second command, ng add, supports turning applications into progressive web apps, which support offline web pages. Apart from these frameworks, React is also a good alternative. Backed by Facebook, it has a Create-React-App generator which is the official scaffolding tool to generate a Reactjs App. Get started with Scott Domes's Progressive Web Apps with React as your first step for building PWA applications. Yet another popular choice, would be Webpack. Webpack plugins can generate the service worker and manifest required for a PWA to be registered. It uses a Google project called Workbox which provides tools that help make offline support for web apps easier to set up. The bottom line is that the frameworks for building progressive web apps are growing and expanding at a rapid rate with regular updates every couple of months. Choosing a particular framework thus doesn’t make much difference to the app behavior. It only depends on the developer’s area of interest and expertise. Windows launches progressive web apps… that don't yet work on mobile How to Secure and Deploy an Android App How Android app developers can convert iPhone apps
Read more
  • 0
  • 0
  • 34507
article-image-penetration-testing-rules-of-engagement
Fatema Patrawala
14 May 2018
7 min read
Save for later

5 pen testing rules of engagement: What to consider while performing Penetration testing

Fatema Patrawala
14 May 2018
7 min read
Penetration testing and ethical hacking are proactive ways of testing web applications by performing attacks that are similar to a real attack that could occur on any given day. They are executed in a controlled way with the objective of finding as many security flaws as possible and to provide feedback on how to mitigate the risks posed by such flaws. Security-conscious corporations have implemented integrated penetration testing, vulnerability assessments, and source code reviews in their software development cycle. Thus, when they release a new application, it has already been through various stages of testing and remediation. When planning to execute a penetration testing project, be it for a client as a professional penetration tester or as part of a company's internal security team, there are aspects that always need to be considered before starting the engagement. [box type="shadow" align="" class="" width=""]This article is an excerpt from the book Web Penetration testing with Kali Linux - Third Edition, written by Gilberto Najera-Gutierrez, Juned Ahmed Ansari.[/box] Rules of Engagement for Pen testing Rules of Engagement (RoE) is a document that deals with the manner in which the penetration test is to be conducted. Some of the directives that should be clearly spelled out in RoE before you start the penetration test are as follows: The type and scope of testing Client contact details Client IT team notifications Sensitive data handling Status meeting and reports Type and scope of Penetration testing The type of testing can be black box, white box, or an intermediate gray box, depending on how the engagement is performed and the amount of information shared with the testing team. There are things that can and cannot be done in each type of testing. With black box testing, the testing team works from the view of an attacker who is external to the organization, as the penetration tester starts from scratch and tries to identify the network map, the defense mechanisms implemented, the internet-facing websites and services, and so on. Even though this approach may be more realistic in simulating an external attacker, you need to consider that such information may be easily gathered from public sources or that the attacker may be a disgruntled employee or ex-employee who already possess it. Thus, it may be a waste of time and money to take a black box approach if, for example, the target is an internal application meant to be used by employees only. White box testing is where the testing team is provided with all of the available information about the targets, sometimes even including the source code of the applications, so that little or no time is spent on reconnaissance and scanning. A gray box test then would be when partial information, such as URLs of applications, user-level documentation, and/or user accounts are provided to the testing team. Gray box testing is especially useful when testing web applications, as the main objective is to find vulnerabilities within the application itself, not in the hosting server or network. Penetration testers can work with user accounts to adopt the point of view of a malicious user or an attacker that gained access through social engineering. [box type="note" align="" class="" width=""]When deciding on the scope of testing, the client along with the testing team need to evaluate what information is valuable and necessary to be protected, and based on that, determine which applications/networks need to be tested and with what degree of access to the information.[/box] Client contact details We can agree that even when we take all of the necessary precautions when conducting tests, at times the testing can go wrong because it involves making computers do nasty stuff. Having the right contact information on the client-side really helps. A penetration test is often seen turning into a Denial-of-Service (DoS) attack. The technical team on the client side should be available 24/7 in case a computer goes down and a hard reset is needed to bring it back online. [box type="note" align="" class="" width=""]Penetration testing web applications has the advantage that it can be done in an environment that has been specially built for that purpose, allowing the testers to reduce the risk of negatively affecting the client's productive assets.[/box] Client IT team notifications Penetration tests are also used as a means to check the readiness of the support staff in responding to incidents and intrusion attempts. You should discuss this with the client whether it is an announced or unannounced test. If it's an announced test, make sure that you inform the client of the time and date, as well as the source IP addresses from where the testing (attack) will be done, in order to avoid any real intrusion attempts being missed by their IT security team. If it's an unannounced test, discuss with the client what will happen if the test is blocked by an automated system or network administrator. Does the test end there, or do you continue testing? It all depends on the aim of the test, whether it's conducted to test the security of the infrastructure or to check the response of the network security and incident handling team. Even if you are conducting an unannounced test, make sure that someone in the escalation matrix knows about the time and date of the test. Web application penetration tests are usually announced. Sensitive data handling During test preparation and execution, the testing team will be provided with and may also find sensitive information about the company, the system, and/or its users. Sensitive data handling needs special attention in the RoE and proper storage and communication measures should be taken (for example, full disk encryption on the testers' computers, encrypting reports if they are sent by email, and so on). If your client is covered under the various regulatory laws such as the Health Insurance Portability and Accountability Act (HIPAA), the Gramm-Leach-Bliley Act (GLBA), or the European data privacy laws, only authorized personnel should be able to view personal user data. Status meeting and reports Communication is key for a successful penetration test. Regular meetings should be scheduled between the testing team and the client organization and routine status reports issued by the testing team. The testing team should present how far they have reached and what vulnerabilities have been found up to that point. The client organization should also confirm whether their detection systems have triggered any alerts resulting from the penetration attempt. If a web server is being tested and a WAF was deployed, it should have logged and blocked attack attempts. As a best practice, the testing team should also document the time when the test was conducted. This will help the security team in correlating the logs with the penetration tests. [box type="note" align="" class="" width=""]WAFs work by analyzing the HTTP/HTTPS traffic between clients and servers, and they are capable of detecting and blocking the most common attacks on web applications.[/box] To build defense against web attacks with Kali Linux and understand the concepts of hacking and penetration testing, check out this book Web Penetration Testing with Kali Linux - Third Edition. Top 5 penetration testing tools for ethical hackers Essential skills required for penetration testing Approaching a Penetration Test Using Metasploit
Read more
  • 0
  • 2
  • 65719

article-image-learn-kotlin-next-universal-programming-language
Sugandha Lahoti
11 May 2018
14 min read
Save for later

Forget C and Java. Learn Kotlin: the next universal programming language

Sugandha Lahoti
11 May 2018
14 min read
Kotlin is fast moving towards becoming the universal programming language. What is a universal programming language? From a simplistic view, the expectation could be that one language is used for all types of programming. While that may be far-fetched in today's complex world, the expectation could be adjusted to one language becoming the dominant programming language. Most certainly, it is the single, most important language to master. [box type="shadow" align="" class="" width=""]This article is an excerpt from the book,  Kotlin Blueprints, written by Ashish Belagali, Hardik Trivedi, and Akshay Chordiya. With this book, you will learn how to design and prototype professional-grade applications using various features of Kotlin.[/box] Historically, different languages have used strategies appropriate for those times to become the universal programming languages: In the 1970s, C became the universal programming language. Prior to C, the programming languages of the world were divided between low-level and high-level languages, the former being the languages that were close to machine code and the latter being ones that were more concise and worked better for human understanding. The C programming language was developed as a single language that could work as a low-level and a high-level language. The Unix operating system was showcased as one that was built ground-up entirely on C, without needing another low-level language. In the 1990s, Java became the universal programming language with the Write Once Run Anywhere strategy. Prior to Java, developers needed to create different programs to run on different platforms (different operating systems running on different hardware needed different programs to run). However, with Java, programs could be written targeting a single platform, namely the Java Virtual Machine (JVM). The JVM is available on all the popular platforms and takes care of all platform-specific nuances. The Java language became the universal language by being the language in which to write programs for the JVM. Another two decades have passed, and the stage is all set to welcome the next universal language. Let's examine Kotlin's strategy to become that. Why can Kotlin be described as a better Java than any other language? How does Kotlin address areas beyond the Java world? What is Kotlin's winning strategy? What does this all mean for a smart developer? Why Kotlin vs Java? Why is being a better Java important for a language? For over a decade, Java has consistently been the world's most widely used programming language. Therefore, a language that gets crowned as being a better Java should automatically attract the attention of the world's single largest community of programmers: the Java programmers. The TIOBE index is widely referred to as a gauge of the popularity of programming languages. Updated to August 2017, the index graph is reproduced in the following illustration:   The interesting point is that while Java has been the #1 programming language in the world for the last 15 years or so, it has been in a steady state of decline for many years now. Many new languages have kept coming, and existing ones have kept improving, chipping steadily into Java's developer base; however, none of them have managed to take the #1 position from Java so far. Today, Kotlin is poised to become the most serious challenger for the better Java crown, and subsequently, to take the first place, for reasons that we will see shortly. Presently at 41st place, Kotlin is marching ahead at a fast pace. In May 2017, Google announced Kotlin to be the officially supported language for Android development in league with Java. This has turned out to be a major boost for Kotlin, and the rate of its adoption has accelerated ever since. Why not other languages? Many languages prior to Kotlin have tried to become a better Java. Let's see why they could never become one. Every language attracts the programmer community by giving them an ability to do something that was cumbersome before. Their adoption is directly driven by how much value the promise has for them and how much faith the community can put into that promise. All languages or frameworks that claimed to be a better Java and offered something worthwhile beyond what Java offers also took something back in turn. Here are a few examples: .NET framework has been the longtime rival of Java and has supported multiple languages from day one. Based on the lessons learned from Java, the .NET designers came up with better language constructs. However, the biggest hurdle for .NET was that it was a proprietary technology, and that created an impediment to its adoption. Also, .NET was more aggressive in adding newer language constructs. While the framework evolved quickly as a result of that, it broke its backward compatibility many times. Ruby (and Python) offered shortened code, enticing programming constructs, and greater expressiveness as opposed to the boring Java; however, they took away static typing support (which helps to make robust programs) and made the programs slower. Scala offered shortened code and advanced programming constructs, without sacrificing typing safety. However, Scala is complex and has a substantially high learning curve. It supports multiple coding styles. So, there is a danger that Scala code written by one developer may not be understood easily by another. These are risk factors for any project that includes a team of developers and when the application is expected to be supported over a long period, which is true about most applications anyway. Why Kotlin? Unlike other languages, Kotlin offers a lot of power over Java, while not taking anything away. Let's take a look at the following screenshot to see how: Kotlin is interoperable with Java. It is possible to write applications containing both Java and Kotlin code, calling one from the other. Calling Java code from Kotlin is simpler, as opposed to the other way around, but the former will be the case most of the times anyway, where new Kotlin code is added on top of legacy Java code. Kotlin is interoperable and can use all the Java libraries and legacy coding without having to do any code conversion. It is possible to inject Kotlin into a Java project without boiling the ocean. Concise yet expressive code While being interoperable, Kotlin code is far superior to Java code. Like Scala, Kotlin uses type inference to cut down on a lot of boilerplate code and makes it concise. (Type inference is a better feature than dynamic typing as it reduces the code without sacrificing the robustness of the end product). However, unlike Scala, Kotlin code is easy to read and understand, even for someone who may not know Kotlin. Kotlin's data class construct is the most prominent example of being concise as shown in the following: data class Employee (val id: Long, var name: String) Compared to its Java counterpart, the preceding line has packed into it the class definition, member variables, constructor, getter-setter methods, and also the utility methods, such as equals() and hashCode(). This will easily take 15-20 lines of Java code. The data classes construct is not an isolated example. There are many others where the syntax is concise and expressive. Consider the following as additional examples: Kotlin's default values to function parameters save the need to overload the functions Kotlin's extension functions can be used to add domain-specific functionality to existing classes, making it easy for someone from the domain to understand Enhanced robustness Statically typed languages have a built-in safety net because of the assurance that the compiler will catch any incorrect type cast. Both Java and Kotlin support static typing. With Java Generics introduced in Java 1.5, they both fare better over the Java releases prior to 1.5. However, Kotlin takes a big step further in addressing the Null pointer error. This Null pointer error causes a lot of checks in Java programs: String s = someOperation(); if (s != null) { ... } One can see that the null check is not needed if someOperation() never returns null. On the other hand, it is possible for a programmer to omit the null check while someOperation() returning null is a valid case. With Kotlin, the definition of someOperation() itself will return either String or String? and then there are implications on the subsequent code, so the developer just cannot go wrong. Refer the  following table: fun someOperation() : String // not nullable fun someOperation() : String? // nullable val s = someOperation() if (s != null) { // null check not needed – editor warning … } val s = someOperation() n = s.length() // error, null check imposed n = s?.length() ?: 0 // handling null condition One may point out that Java developers can use the @Nullable and @NotNull annotations or the Optional class; however, these were added quite late, most developers are not aware of them, and they can always get away with not using them, as the code does not break. Finally, they are not as elegant as putting a question mark. There is also a subtle point here. If a Kotlin developer is careless, he would write just the type name, which would automatically become a non-nullable declaration. If he wanted to make it nullable, he would have to  key in that extra question mark deliberately. Thus, you are on the side of caution, and that is as far as keeping the code robust is concerned. Another example of this robustness is found in the var/val declarations. Seasoned programmers know that most variables get a value assigned to them only once. In Kotlin, while declaring the variable, you choose val for such a variable. At the time of variable declaration, the programmer has to select between val and var, and so he puts some thought into it. On the other hand, in Java, you can get away with just declaring the type with its name, and you will rarely find any Java code that defines a variable with the final keyword, which is Java's way of declaring that the variable can be assigned a value only once. Basically, with the same maturity level of programmers, you expect a relatively more robust code in Kotlin as opposed to Java, and that's a big win from the business perspective. Excellent IDE support from day one Kotlin comes from JetBrains, who also develop a well-known Java integrated development environment (IDE): IntelliJ IDEA. JetBrains developers made sure that Kotlin has first-class support in IDEA. Not only that, they also developed a Kotlin plugin for Eclipse, which is the #1 most widely used Java IDE. Contrast this with the situation when Java appeared on the scene roughly two decades ago. There was no good IDE support. Programmers were asked to use simple text editors. Coding Java was hard, with no safety net provided by an IDE, until the Eclipse editor was open-sourced. In the case of Kotlin, the editor's suggestions being available from day one means that they can learn the language faster, make fewer mistakes, and write good quality compilable code with relative ease. Clearly, Kotlin does not want to waste any time in climbing up the ladder of popularity. Beyond being a better Java We saw that on the JVM platform, Kotlin is neat and quite superior. However, Kotlin has set its eyes beyond the JVM. Its strategy is to win based on its superior and modern feature set. Before we go ahead, let's list the top five appeals of Kotlin: Static typing (like in C or Java) means that there is built-in type safety. The compiler catches any incorrect type assignments. This makes programs robust. Kotlin is concise and expressive. Being concise implies that there is less to read and maintain. Being expressive implies better maintainability. Being a JVM language, the Kotlin programs can take advantage of the features built into the JVM, such as its cross-platform nature, memory management, high performance and sandbox security. Kotlin has inbuilt null-safety. Null references are famous as the billion-dollar mistake, as admitted by its inventor Tony Hoare and cost a great deal of unnecessary null-checks in programs. Kotlin eliminates those and makes the programs more robust. Kotlin is easy to learn, especially for Java developers. Its syntax is clean and therefore easy to understand, because of which, Kotlin programs are fun for developers to code and easy to understand, and enhancing for their peers. From a business angle, they are more robust and easy to maintain for businesses. Kotlin is in the winning camp The features of Kotlin have a good validation when one considers that other languages, which have similar features, are also growing in popularity: The Crystal language attracts Ruby programmers by adding static typing support. Similarly, TypeScript adds static typing support to JavaScript and has become the preferred language for some JavaScript frameworks. Scala and F# add functional programming support to traditional non-functional paradigms without sacrificing type safety and, hence, are more attractive. Kotlin uses functional programming, just enough to ease out the programming in a lot of cases, but not too much to make it complex. Like Kotlin, Swift, and Rust also have inbuilt null-safety. Kotlin and Swift are often compared, as their syntaxes resemble one another a lot. Server-side languages, which were getting designed after the emergence of the parallel computing phenomena, became one of the chief requirements for providing inbuilt constructs for easing the programmer's work. One can find this in both Kotlin (coroutines) and Rust. Go native strategy The Kotlin developers figured that the same strategy that is used on the JVM platform could be used on other platforms too. Consider the following illustration: On no platform does Kotlin disrupt the platform's existing technology: The JVM works with the Java bytecode and Kotlin gives an alternative to Java to generate the same bytecode (By no means is Kotlin the first alternative as there are already 200+ languages that work with JVM, but it is the most elegant one for all the reasons that we have seen previously). On modern browsers where JavaScript is the de facto standard, Kotlin can work by transpiling to JavaScript. Again, this means that Kotlin is friendly with existing browsers without making any special effort. On the Node.js platform where JavaScript is used on the server side, your Kotlin code transpiles into JavaScript, and hence there are no changes needed in the Node.js framework for Kotlin to run. In a similar way, Kotlin/Native plans to work with other technologies in a native way. Since the platform's technology is not disrupted, there are zero changes needed at the platform level to adopt Kotlin. Kotlin's compatibility with a given platform can be taken for granted from day one. This eliminates a big business risk. Kotlin's winning strategy Kotlin's winning strategy is the sum of the various factors that we have seen previously. It has a two-pronged strategy to win over the developers with the coolness of the language, and the ease of working with it, to win over business users with its business benefits. The following illustration shows us the different benefits of using Kotlin: The other benefits also include: The growing popularity of the language Endorsement from Google to make Kotlin an officially supported language in May 2017 Kotlin-specific development frameworks emerging Leading Java frameworks, such as Spring, offering Kotlin-specific improvements The growing number of applications being tried out with Kotlin The user groups spread across Kotlin developer hubs The growing number of technology companies using Kotlin With this in mind, the winning strategy for smart programmers is to master Kotlin and learn to work with Kotlin on various platforms. Being ahead of the curve as opposed to following the world after Kotlin is already big but it will be a quick path to being recognized as a leader. Further chapters of this book will help you in exactly this mission. Apart from going through this book, we strongly suggest you join the community. Join the Kotlin weekly mailing list at http://kotlinweekly.net. Join the nearest Kotlin user group at http://kotlinlang.org/community/user-groups.html. Kotlin's community on Slack is at https://kotlinlang.slack.com/. We saw how Kotlin is well positioned to take off as the universal programming language. It offers an opportunity for smart programmers to establish themselves at the forefront of this rising tide. This article was taken from the book Kotlin Blueprints. If you liked reading this piece, check out the  book to build comprehensive applications using Kotlin features.  Getting started with Kotlin programming Build your first Android app with Kotlin How to convert Java code into Kotlin
Read more
  • 0
  • 2
  • 11987

article-image-6-reasons-to-choose-mysql-8-for-designing-database-solutions
Amey Varangaonkar
08 May 2018
4 min read
Save for later

6 reasons to choose MySQL 8 for designing database solutions

Amey Varangaonkar
08 May 2018
4 min read
Whether you are a standalone developer or an enterprise consultant, you would obviously choose a database that provides good benefits and results when compared to other related products. MySQL 8 provides numerous advantages as the first choice in this competitive market. It has various powerful features available that make it a more comprehensive database. Today we will go through the benefits of using MySQL as the preferred database solution: [box type="note" align="" class="" width=""]The following excerpt is taken from the book MySQL 8 Administrator’s Guide, co-authored by Chintan Mehta, Ankit Bhavsar, Hetal Oza and Subhash Shah. This book presents step-by-step techniques on managing, monitoring and securing the MySQL database without any hassle.[/box] Security The first thing that comes to mind is securing data because nowadays data has become precious and can impact business continuity if legal obligations are not met; in fact, it can be so bad that it can close down your business in no time. MySQL is the most secure and reliable database management system used by many well-known enterprises such as Facebook, Twitter, and Wikipedia. It really provides a good security layer that protects sensitive information from intruders. MySQL gives access control management so that granting and revoking required access from the user is easy. Roles can also be defined with a list of permissions that can be granted or revoked for the user. All user passwords are stored in an encrypted format using plugin-specific algorithms. Scalability Day by day, the mountain of data is growing because of extensive use of technology in numerous ways. Because of this, load average is going through the roof. In some cases, it is unpredictable that data cannot exceed up to some limit or number of users will not go out of bounds. Scalable databases would be a preferable solution so that, at any point, we can meet unexpected demands to scale. MySQL is a rewarding database system for its scalability, which can scale horizontally and vertically; in terms of data, spreading database and load of application queries across multiple MySQL servers is quite feasible. It is pretty easy to add horsepower to the MySQL cluster to handle the load. An open source relational database management system MySQL is an open source database management system that makes debugging, upgrading, and enhancing the functionality fast and easy. You can view the source and make the changes accordingly and use it in your own way. You can also distribute an extended version of MySQL, but you will need to have a license for this. High performance MySQL gives high-speed transaction processing with optimal speed. It can cache the results, which boosts read performance. Replication and clustering make the  system scalable for more concurrency and manages the heavy workload. Database indexes also accelerate the performance of SELECT query statements for substantial amount of data. To enhance performance, MySQL 8 has included indexes in performance schema to speed up data retrieval. High availability Today, in the world of competitive marketing, an organization's key point is to have their system up and running. Any failure or downtime directly impacts business and revenue; hence, high availability is a factor that cannot be overlooked. MySQL is quite reliable and has constant availability using cluster and replication configurations. Cluster servers instantly handle failures and manage the failover part to keep your system available almost all the time. If one  server gets down, it will redirect the user's request to another node and perform the requested operation. Cross-platform capabilities MySQL provides cross-platform flexibility that can run on various platforms such as Windows, Linux, Solaris, OS2, and so on. It has great API support  for the all  major languages, which makes it very easy to integrate with languages such as  PHP, C++, Perl,  Python, Java, and so on. It is also part of the Linux Apache  MySQL PHP (LAMP) server that is used worldwide for web applications. That’s it then! We discussed few important reasons of MySQL being the most popular relational database in the world and is widely adopted across many enterprises. If you want to learn more about MySQL’s administrative features, make sure to check out the book MySQL 8 Administrator’s Guide today! 12 most common MySQL errors you should be aware of Top 10 MySQL 8 performance benchmarking aspects to know
Read more
  • 0
  • 0
  • 5364
article-image-are-recurrent-neural-networks-capable-of-warping-time
Savia Lobo
07 May 2018
2 min read
Save for later

Are Recurrent Neural Networks capable of warping time?

Savia Lobo
07 May 2018
2 min read
‘Can Recurrent neural networks warp time?’ is authored by Corentin Tallec and Yann Ollivier to be presented at ICLR 2018. This paper explains that plain RNNs cannot account for warpings, leaky RNNs can account for uniform time scalings but not irregular warpings, and gated RNNs can adapt to irregular warpings. Gating mechanism of LSTMS (and GRUs) to time invariance / warping What problem is the paper trying to solve? In this paper, that authors prove that learnable gates in a recurrent model formally provide quasi-invariance to general time transformations in the input data. Further, the authors try to recover part of the LSTM architecture from a simple axiomatic approach. This leads to a new way of initializing gate biases in LSTMs and GRUs. Experimentally, this new chrono initialization is shown to greatly improve learning of long term dependencies, with minimal implementation effort. Paper summary The authors have derived the self loop feedback gating mechanism of recurrent networks from first principles via a postulate of invariance to time warpings. Gated connections appear to regulate the local time constants in recurrent models. With this in mind, the chrono initialization, a principled way of initializing gate biases in LSTMs, has been introduced. Experimentally, chrono initialization is shown to bring notable benefits when facing long term dependencies. Key takeaways In this paper, the authors show that postulating invariance to time transformations in the data (taking invariance to time warping as an axiom) necessarily leads to a gate-like mechanism in recurrent models. The paper provides precise prescriptions on how to initialize gate biases depending on the range of time dependencies to be captured. The empirical benefits of the new initialization on both synthetic and real world data have been tested. The authors also observed a substantial improvement with long-term dependencies, and slight gains or no change when short-term dependencies dominate. Reviewer comments summary Overall Score: 25/30 Average Score: 8 According to a reviewer, the core insight of the paper is the link between recurrent network design and its effect on how the network reacts to time transformations. This insight is simple, elegant and valuable, as per the reviewer. A minor complaint highlighted is that there are an unnecessarily large number of paragraph breaks, which make reading slightly jarring. Recurrent neural networks and the LSTM architecture Build a generative chatbot using recurrent neural networks (LSTM RNNs) How to recognize Patterns with Neural Networks in Java  
Read more
  • 0
  • 0
  • 8797

article-image-2018-year-of-graph-databases
Amey Varangaonkar
04 May 2018
5 min read
Save for later

2018 is the year of graph databases. Here's why.

Amey Varangaonkar
04 May 2018
5 min read
With the explosion of data, businesses are looking to innovate as they connect their operations to a whole host of different technologies. The need for consistency across all data elements is now stronger than ever. That’s where graph databases come in handy. Because they allow for a high level of flexibility when it comes to representing your data and also while handling complex interactions within different elements, graph databases are considered by many to be the next big trend in databases. In this article, we dive deep into the current graph database scene, and list out 3 top reasons why graph databases will continue to soar in terms of popularity in 2018. What are graph databases, anyway? Simply put, graph databases are databases that follow the graph model. What is a graph model, then? In mathematical terms, a graph is simply a collection of nodes, with different nodes connected by edges. Each node contains some information about the graph, while edges denote the connection between the nodes. How are graph databases different from the relational databases, you might ask? Well, the key difference between the two is the fact that graph data models allow for more flexible and fine-grained relationships between data objects, as compared to relational models. There are some more differences between the graph data model and the relational data model, which you should read through for more information. Often, you will see that graph databases are without a schema. This allows for a very flexible data model, much like the document or key/value store database models. A unique feature of the graph databases, however, is that they also support relationships between the data objects like a relational database. This is useful because it allows for a more flexible and faster database, which can be invaluable to your project which demands a quicker response time. Image courtesy DB-Engines The rise in popularity of the graph database models over the last 5 years has been stunning, but not exactly surprising. If we were to drill down the 3 key factors that have propelled the popularity of graph databases to a whole new level, what would they be? Let’s find out. Major players entering the graph database market About a decade ago, the graph database family included just Neo4j and a couple of other less-popular graph databases. More recently, however, all the major players in the industry such as Oracle (Oracle Spatial and Graph), Microsoft (Graph Engine), SAP (SAP Hana as a graph store) and IBM (Compose for JanusGraph) have come up with graph offerings of their own. The most recent entrant to the graph database market is Amazon, with Amazon Neptune announced just last year. According to Andy Jassy, CEO of Amazon Web Services, graph databases are becoming a part of the growing trend of multi-model databases. Per Jassy, these databases are finding increased adoption on the cloud as they support a myriad of useful data processing methods. The traditional over-reliance on relational databases is slowly breaking down, he says. Rise of the Cypher Query Language With graph databases slowly getting mainstream recognition and adoption, the major companies have identified the need for a standard query language for all graph databases. Similar to SQL, Cypher has emerged as a standard and is a widely-adopted alternative to write efficient and easy to understand graph queries. As of today, the Cypher Query Language is used in popular graph databases such as Neo4j, SAP Hana, Redis graph and so on. The OpenCypher project, the project that develops and maintains Cypher, has also released Cypher for popular Big Data frameworks like Apache Spark. Cypher’s popularity has risen tremendously over the last few years. The primary reason for this is the fact that like SQL, Cypher’s declarative nature allows users to state the actions they want performed on their graph data without explicitly specifying them. Finding critical real-world applications Graph databases were in the news as early as 2016, when the Panama paper leaks were revealed with the help of Neo4j and Linkurious, a data visualization software. In more recent times, graph databases have also found increased applications in online recommendation engines, as well as for performing tasks that include fraud detection and managing social media. Facebook’s search app also uses graph technology to map social relationships. Graph databases are also finding applications in virtual assistants to drive conversations - eBay’s virtual shopping assistant is an example. Even NASA uses the knowledge graph architecture to find critical data. What next for graph databases? With growing adoption of graph databases, we expect graph-based platforms to soon become the foundational elements of many corporate tech stacks. The next focus area for these databases will be practical implementations such as graph analytics and building graph-based applications. The rising number of graph databases would also mean more competition, and that is a good thing - competition will bring more innovation, and enable incorporation of more cutting-edge features. With a healthy and steadily growing community of developers, data scientists and even business analysts, this evolution may be on the cards, sooner than we might expect. Amazon Neptune: A graph database service for your applications When, why and how to use Graph analytics for your big data
Read more
  • 0
  • 0
  • 9876