Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
What's New in TensorFlow 2.0

You're reading from   What's New in TensorFlow 2.0 Use the new and improved features of TensorFlow to enhance machine learning and deep learning

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781838823856
Length 202 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Tanish Baranwal Tanish Baranwal
Author Profile Icon Tanish Baranwal
Tanish Baranwal
Alizishaan Khatri Alizishaan Khatri
Author Profile Icon Alizishaan Khatri
Alizishaan Khatri
Ajay Baranwal Ajay Baranwal
Author Profile Icon Ajay Baranwal
Ajay Baranwal
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Section 1: TensorFlow 2.0 - Architecture and API Changes FREE CHAPTER
2. Getting Started with TensorFlow 2.0 3. Keras Default Integration and Eager Execution 4. Section 2: TensorFlow 2.0 - Data and Model Training Pipelines
5. Designing and Constructing Input Data Pipelines 6. Model Training and Use of TensorBoard 7. Section 3: TensorFlow 2.0 - Model Inference and Deployment and AIY
8. Model Inference Pipelines - Multi-platform Deployments 9. AIY Projects and TensorFlow Lite 10. Section 4: TensorFlow 2.0 - Migration, Summary
11. Migrating From TensorFlow 1.x to 2.0 12. Other Books You May Enjoy

Running TFLite on low-power machines

TFLite's capability of being able to run on low-power and low-binary machines makes it very powerful when run on embedded Linux machines. TFLite can be run on many of the popular embedded Linux machines, and as well as on the Coral Dev Board. In this section, we will cover the building, compiling, and running of TFLite on three devices. The first device that's covered is the Coral Dev Board with the Edge TPU processor, the second device is the NVIDIA Jetson Nano, and the final one is the Raspberry Pi. The NVIDIA Jetson Nano is a small and powerful computer from NVIDIA that runs multiple neural networks in parallel in applications such as image classification, object detection, segmentation, and speech processing.

Running TFLite on an Edge...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime