Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TensorFlow 2 Reinforcement Learning Cookbook

You're reading from   TensorFlow 2 Reinforcement Learning Cookbook Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781838982546
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Palanisamy Palanisamy
Author Profile Icon Palanisamy
Palanisamy
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Chapter 1: Developing Building Blocks for Deep Reinforcement Learning Using Tensorflow 2.x 2. Chapter 2: Implementing Value-Based, Policy-Based, and Actor-Critic Deep RL Algorithms FREE CHAPTER 3. Chapter 3: Implementing Advanced RL Algorithms 4. Chapter 4: Reinforcement Learning in the Real World – Building Cryptocurrency Trading Agents 5. Chapter 5: Reinforcement Learning in the Real World – Building Stock/Share Trading Agents 6. Chapter 6: Reinforcement Learning in the Real World – Building Intelligent Agents to Complete Your To-Dos 7. Chapter 7: Deploying Deep RL Agents to the Cloud 8. Chapter 8: Distributed Training for Accelerated Development of Deep RL Agents 9. Chapter 9: Deploying Deep RL Agents on Multiple Platforms 10. Other Books You May Enjoy

Chapter 3: Implementing Advanced RL Algorithms

This chapter provides short and crisp recipes to implement advanced Reinforcement Learning (RL) algorithms and agents from scratch using TensorFlow 2.x. It includes recipes to build Deep-Q-Networks (DQN), Double and Dueling Deep Q-Networks (DDQN, DDDQN), Deep Recurrent Q-Networks (DRQN), Asynchronous Advantage Actor-Critic (A3C), Proximal Policy Optimization (PPO), and Deep Deterministic Policy Gradients (DDPG).

The following recipes are discussed in this chapter:

  • Implementing the Deep Q-Learning algorithm, DQN, and Double-DQN agent
  • Implementing the Dueling DQN agent
  • Implementing the Dueling Double DQN algorithm and DDDQN agent
  • Implementing the Deep Recurrent Q-Learning algorithm and DRQN agent
  • Implementing the Asynchronous Advantage Actor-Critic algorithm and A3C agent
  • Implementing the Proximal Policy Optimization algorithm and PPO agent
  • Implementing the Deep Deterministic Policy Gradient algorithm and...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image