Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Cookbook

You're reading from   R Deep Learning Cookbook Solve complex neural net problems with TensorFlow, H2O and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121089
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Achyutuni Sri Krishna Rao Achyutuni Sri Krishna Rao
Author Profile Icon Achyutuni Sri Krishna Rao
Achyutuni Sri Krishna Rao
PKS Prakash PKS Prakash
Author Profile Icon PKS Prakash
PKS Prakash
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Deep Learning with R 3. Convolution Neural Network 4. Data Representation Using Autoencoders 5. Generative Models in Deep Learning 6. Recurrent Neural Networks 7. Reinforcement Learning 8. Application of Deep Learning in Text Mining 9. Application of Deep Learning to Signal processing 10. Transfer Learning

Setting up autoencoders


There exist a lot of different architectures of autoencoders distinguished by cost functions used to capture data representation. The most basic autoencoder is known as a vanilla autoencoder. It's a two-layer neural network with one hidden layer the same number of nodes at the input and output layers, with an objective to minimize the cost function. The typical choices, but not limited to, for a loss function are mean square error (MSE) for regression and cross entropy for classification. The current approach can be easily extended to multiple layers, also known as multilayer autoencoder.

The number of nodes plays a very critical role in autoencoders. If the number of nodes in the hidden layer is less than the input layer then an autoencoder is known as an under-complete autoencoder. A higher number of nodes in the hidden layer represents an over-complete autoencoder or sparse autoencoder.

The sparse autoencoder aims to impose sparsity in the hidden layer. This sparsity...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image