Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning Cookbook

You're reading from   Python Machine Learning Cookbook 100 recipes that teach you how to perform various machine learning tasks in the real world

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781786464477
Length 304 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The Realm of Supervised Learning FREE CHAPTER 2. Constructing a Classifier 3. Predictive Modeling 4. Clustering with Unsupervised Learning 5. Building Recommendation Engines 6. Analyzing Text Data 7. Speech Recognition 8. Dissecting Time Series and Sequential Data 9. Image Content Analysis 10. Biometric Face Recognition 11. Deep Neural Networks 12. Visualizing Data Index

Performing Principal Components Analysis


Principal Components Analysis (PCA) is a dimensionality reduction technique that's used very frequently in computer vision and machine learning. When we deal with features with large dimensionalities, training a machine learning system becomes prohibitively expensive. Therefore, we need to reduce the dimensionality of the data before we can train a system. However, when we reduce the dimensionality, we don't want to lose the information present in the data. This is where PCA comes into the picture! PCA identifies the important components of the data and arranges them in the order of importance. You can learn more about it at http://dai.fmph.uniba.sk/courses/ml/sl/PCA.pdf. It is used a lot in face recognition systems. Let's see how to perform PCA on input data.

How to do it…

  1. Create a new Python file, and import the following packages:

    import numpy as np
    from sklearn import decomposition 
  2. Let's define five dimensions for our input data. The first two dimensions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image