Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Machine Learning By Example

You're reading from   Python Machine Learning By Example Implement machine learning algorithms and techniques to build intelligent systems

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789616729
Length 382 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Fundamentals of Machine Learning FREE CHAPTER
2. Getting Started with Machine Learning and Python 3. Section 2: Practical Python Machine Learning By Example
4. Exploring the 20 Newsgroups Dataset with Text Analysis Techniques 5. Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms 6. Detecting Spam Email with Naive Bayes 7. Classifying Newsgroup Topics with Support Vector Machines 8. Predicting Online Ad Click-Through with Tree-Based Algorithms 9. Predicting Online Ad Click-Through with Logistic Regression 10. Scaling Up Prediction to Terabyte Click Logs 11. Stock Price Prediction with Regression Algorithms 12. Section 3: Python Machine Learning Best Practices
13. Machine Learning Best Practices 14. Other Books You May Enjoy

Getting started with classification

Spam email detection is basically a machine learning classification problem. Let's get started by learning important concepts of machine learning classification. Classification is one of the main instances of supervised learning. Given a training set of data containing observations and their associated categorical outputs, the goal of classification is to learn a general rule that correctly maps the observations (also called features or predictive variables) to the target categories (also called labels or classes). Put another way, a trained classification model will be generated after learning from features and targets of training samples, as shown in the first half of the following diagram. When new or unseen data comes in, the trained model will be able to determine their desired memberships. Class information will be predicted based...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image