Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Practical Predictive Analytics
Practical Predictive Analytics

Practical Predictive Analytics: Analyse current and historical data to predict future trends using R, Spark, and more

eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Practical Predictive Analytics

Getting Started with Predictive Analytics

"In God we trust, all others must bring Data"

- Deming

I enjoy working and explaining predictive analytics to people because it is based upon a simple concept: predicting the probability of future events based upon historical data. Its history may date back to at least 650 BC. Some early examples include the Babylonians, who tried to predict short-term weather changes based on cloud appearances and halos: Weather Forecasting through the Ages, NASA.

Medicine also has a long history of needing to classify diseases. The Babylonian king Adad-apla-iddina decreed that medical records be collected to form the Diagnostic Handbook. Some predictions in this corpus list treatments based on the number of days the patient had been sick, and their pulse rate (Linda Miner et al., 2014). One of the first instances of bioinformatics!

In later times, specialized predictive analytics was developed at the onset of the insurance underwriting industries. This was used as a way to predict the risk associated with insuring marine vessels (https://www.lloyds.com/lloyds/about-us/history/corporate-history). At about the same time, life insurance companies began predicting the age that a person would live to in order to set the most appropriate premium rates.

Although the idea of prediction always seemed to be rooted early in the human need to understand and classify, it was not until the 20th century, and the advent of modern computing, that it really took hold.

In addition to helping the US government in the 1940s break code, Alan Turing also worked on the initial computer chess algorithms that pitted man against machine. Monte Carlo simulation methods originated as part of the Manhattan project, where mainframe computers crunched numbers for days in order to determine the probability of nuclear attacks (Computing and the Manhattan Project, n.d).

In the 1950s, Operations Research (OR) theory developed, in which one could optimize the shortest distance between two points. To this day, these techniques are used in logistics by companies such as UPS and Amazon.

Non-mathematicians have also gotten in on the act. In the 1970s, cardiologist Lee Goldman (who worked aboard a submarine) spend years developing a decision tree that did this efficiently. This helped the staff determine whether or not the submarine needed to resurface in order to help the chest pain sufferers (Gladwell, 2005)!

What many of these examples had in common was that people first made observations about events which had already occurred, and then used this information to generalize and then make decisions about might occur in the future. Along with prediction, came further understanding of cause and effect and how the various parts of the problem were interrelated. Discovery and insight came about through methodology and adhering to the scientific method.

Most importantly, they came about in order to find solutions to important, and often practical, problems of the times. That is what made them unique.

Predictive analytics are in so many industries

We have come a long way since then, and practical analytics solutions have furthered growth in so many different industries. The internet has had a profound effect on this; it has enabled every click to be stored and analyzed. More data is being collected and stored, some with very little effort, than ever before. That in itself has enabled more industries to enter predictive analytics.

Predictive Analytics in marketing

One industry that has embraced PA for quite a long time is marketing. Marketing has always been concerned with customer acquisition and retention, and has developed predictive models involving various promotional offers and customer touch points, all geared to keeping customers and acquiring new ones. This is very pronounced in certain segments of marking, such as wireless and online shopping cards, in which customers are always searching for the best deal.

Specifically, advanced analytics can help answer questions such as, If I offer a customer 10% off with free shipping, will that yield more revenue than 15% off with no free shipping? The 360-degree view of the customer has expanded the number of ways one can engage with the customer, therefore enabling marketing mix and attribution modeling to become increasingly important. Location-based devices have enabled marketing predictive applications to incorporate real-time data to issue recommendation to the customer while in the store.

Predictive Analytics in healthcare

Predictive analytics in healthcare has its roots in clinical trials, which use carefully selected samples to test the efficacy of drugs and treatments. However, healthcare has been going beyond this. With the advent of sensors, data can be incorporated into predictive analytics to monitor patients with critical illness, and to send alerts to the patient when he is at risk. Healthcare companies can now predict which individual patients will comply with courses of treatment advocated by health providers. This will send early warning signs to all parties, which will prevent future complications, as well as lower the total cost of treatment.

Predictive Analytics in other industries

Other examples can be found in just about every other industry. Here are just a few:

  • Finance:
    • Fraud detection is a huge area. Financial institutions are able to monitor client's internal and external transactions for fraud, through pattern recognition and other machine learning algorithms, and then alert a customer concerning suspicious activity. Analytics are often performed in real time. This is a big advantage, as criminals can be very sophisticated and be one step ahead of the previous analysis.
    • Wall street program trading. Trading algorithms will predict intraday highs and lows, and will decide when to buy and sell securities.
  • Sports management:
    • Sports management analytics is able to predict which sports events will yield the greatest attendance and institute variable ticket pricing based upon audience interest.
    • In baseball, a pitcher's entire game can be recorded and then digitally analyzed. Sensors can also be attached to their arm, to alert when future injury might occur.
  • Higher education:
    • Colleges can predict how many, and which kind of, students are likely to attend the next semester, and be able to plan resources accordingly. This is a challenge which is beginning to surface now, many schools may be looking at how scoring changes made to the SAT in 2016 are affecting admissions.
    • Time-based assessments of online modules can enable professors to identify students' potential problems areas, and tailor individual instruction.
  • Government:
    • Federal and State Governments have embraced the open data concept and have made more data available to the public, which has empowered Citizen Data Scientists to help solve critical social and governmental problems.
    • The potential use of data for the purpose of emergency services, traffic safety, and healthcare use is overwhelmingly positive.

Although these industries can be quite different, the goals of predictive analytics are typically implemented to increase revenue, decrease costs, or alter outcomes for the better.

Skills and roles that are important in Predictive Analytics

So what skills do you need to be successful in predictive analytics? I believe that there are three basic skills that are needed:

  • Algorithmic/statistical/programming skills: These are the actual technical skills needed to implement a technical solution to a problem. I bundle these all together since these skills are typically used in tandem. Will it be a purely statistical solution, or will there need to be a bit of programming thrown in to customize an algorithm, and clean the data? There are always multiple ways of doing the same task and it will be up to you, the predictive modeler, to determine how it is to be done.
  • Business skills: These are the skills needed for communicating thoughts and ideas among groups of the interested parties. Business and data analysts who have worked in certain industries for long periods of time, and know their business very well, are increasingly being called upon to participate in predictive analytics projects. Data science is becoming a team sport and most projects include working with others in the organization, summarizing findings, and having good presentation and documentation skills are important. You will often hear the term domain knowledge associated with this. Domain knowledge is important since it allows you to apply your particular analytics skills to the particular analytic problems of whatever business you are (or wish to) work within. Everyone business has its own nuances when it comes to solving analytic problems. If you do not have the time or inclination to learn all about the inner workings of the problem at hand yourself, partner with someone who does. That will be the start of a great team!
  • Data storage/Extract Transform and Load (ETL) skills: This can refer to specialized knowledge regarding extracting data, and storing it in a relational or non-relational NoSQL data store. Historically, these tasks were handled exclusively within a data warehouse. But now that the age of big data is upon us, specialists have emerged who understand the intricacies of data storage, and the best way to organize it.

Related job skills and terms

Along with the term predictive analytics, here are some terms that are very much related:

  • Predictive modeling: This specifically means using a mathematical/statistical model to predict the likelihood of a dependent or target variable. You may still be able to predict; however, if there is no underlying model, it is not a predictive model.
  • Artificial intelligence (AI): A broader term for how machines are able to rationalize and solve problems. AI's early days were rooted in neural networks.
  • Machine learning: A subset of AI. Specifically deals with how a machine learns automatically from data, usually to try to replicate human decision-making or to best it. At this point, everyone knows about Watson, who beat two human opponents in Jeopardy.
  • Data science: Data science encompasses predictive analytics but also adds algorithmic development via coding, and good presentation skills via visualization.
  • Data engineering: Data engineering concentrates on data extraction and data preparation processes, which allow raw data to be transformed into a form suitable for analytics. A knowledge of system architecture is important. The data engineer will typically produce the data to be used by the predictive analysts (or data scientists).
  • Data analyst/business analyst/domain expert: This is an umbrella term for someone who is well versed in the way the business at hand works, and is an invaluable person to learn from in terms of what may have meaning, and what may not.
  • Statistics: The classical form of inference, typically done via hypothesis testing. Statistics also forms the basis for the probability distributions used in machine learning, and is closely tied with predictive analytics and data science.

Predictive analytics software

Originally, predictive analytics was performed by hand, by statisticians on mainframe computers using a progression of various language such as FORTRAN. Some of these languages are still very much in use today. FORTRAN, for example, is still one of the fastest-performing languages around, and operates with very little memory. So, although it may no longer be as widespread in predictive model development as other languages, it certain can be used to implement models in a production environment.

Nowadays, there are many choices about which software to use, and many loyalists remain true to their chosen software. The reality is that for solving a specific type of predictive analytics problem, there exists a certain amount of overlap, and certainly the goal is the same. Once you get the hang of the methodologies used for predictive analytics in one software package, it should be fairly easy to translate your skills to another package.

Open source software

Open source emphasizes agile development and community sharing. Of course, open source software is free, but free must also be balanced in the context of Total Cost Of Ownership (TCO). TCO costs include everything that is factored into a softwares cost over a period of time: that not only includes the cost of the software itself, but includes training, infrastructure setup, maintenance, people costs, as well as other expenses associated with the quick upgrade and development cycles which exist in some products.

Closed source software

Closed source (or proprietary) software such as SAS and SPSS was at the forefront of predictive analytics, and has continued to this day to extend its reach beyond the traditional realm of statistics and machine learning. Closed source software emphasizes stability, better support, and security, with better memory management, which are important factors for some companies.

Peaceful coexistence

There is much debate nowadays regarding which one is better. My prediction is that they both will coexist peacefully, with one not replacing the other. Data sharing and common APIs will become more common. Each has its place within the data architecture and ecosystem that are deemed correct for a company. Each company will emphasize certain factors, and both open and closed software systems are constantly improving themselves. So, in terms of learning one or the other, it is not an either/or decision. Predictive analytics, per second does not care what software you use. Please be open to the advantages offered by both open and closed software. If you do, that will certainly open up possibilities for working for different kinds of companies and technologies

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • A unique book that centers around develop six key practical skills needed to develop and implement predictive analytics
  • Apply the principles and techniques of predictive analytics to effectively interpret big data
  • Solve real-world analytical problems with the help of practical case studies and real-world scenarios taken from the world of healthcare, marketing, and other business domains

Description

This is the go-to book for anyone interested in the steps needed to develop predictive analytics solutions with examples from the world of marketing, healthcare, and retail. We'll get started with a brief history of predictive analytics and learn about different roles and functions people play within a predictive analytics project. Then, we will learn about various ways of installing R along with their pros and cons, combined with a step-by-step installation of RStudio, and a description of the best practices for organizing your projects. On completing the installation, we will begin to acquire the skills necessary to input, clean, and prepare your data for modeling. We will learn the six specific steps needed to implement and successfully deploy a predictive model starting from asking the right questions through model development and ending with deploying your predictive model into production. We will learn why collaboration is important and how agile iterative modeling cycles can increase your chances of developing and deploying the best successful model. We will continue your journey in the cloud by extending your skill set by learning about Databricks and SparkR, which allow you to develop predictive models on vast gigabytes of data.

Who is this book for?

This book is for those with a mathematical/statistics background who wish to understand the concepts, techniques, and implementation of predictive analytics to resolve complex analytical issues. Basic familiarity with a programming language of R is expected.

What you will learn

  • Master the core predictive analytics algorithm which are used today in business
  • Learn to implement the six steps for a successful analytics project
  • Classify the right algorithm for your requirements
  • Use and apply predictive analytics to research problems in healthcare
  • Implement predictive analytics to retain and acquire your customers
  • Use text mining to understand unstructured data
  • Develop models on your own PC or in Spark/Hadoop environments
  • Implement predictive analytics products for customers
Estimated delivery fee Deliver to Belgium

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 30, 2017
Length: 576 pages
Edition : 1st
Language : English
ISBN-13 : 9781785886188
Category :
Languages :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Estimated delivery fee Deliver to Belgium

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Jun 30, 2017
Length: 576 pages
Edition : 1st
Language : English
ISBN-13 : 9781785886188
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 120.97
Statistics for Machine Learning
€41.99
Practical Predictive Analytics
€41.99
Practical Data Science Cookbook, Second Edition
€36.99
Total 120.97 Stars icon

Table of Contents

12 Chapters
Getting Started with Predictive Analytics Chevron down icon Chevron up icon
The Modeling Process Chevron down icon Chevron up icon
Inputting and Exploring Data Chevron down icon Chevron up icon
Introduction to Regression Algorithms Chevron down icon Chevron up icon
Introduction to Decision Trees, Clustering, and SVM Chevron down icon Chevron up icon
Using Survival Analysis to Predict and Analyze Customer Churn Chevron down icon Chevron up icon
Using Market Basket Analysis as a Recommender Engine Chevron down icon Chevron up icon
Exploring Health Care Enrollment Data as a Time Series Chevron down icon Chevron up icon
Introduction to Spark Using R Chevron down icon Chevron up icon
Exploring Large Datasets Using Spark Chevron down icon Chevron up icon
Spark Machine Learning - Regression and Cluster Models Chevron down icon Chevron up icon
Spark Models – Rule-Based Learning Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela