Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning

You're reading from   Practical Machine Learning Learn how to build Machine Learning applications to solve real-world data analysis challenges with this Machine Learning book – packed with practical tutorials

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher Packt
ISBN-13 9781784399689
Length 468 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sunila Gollapudi Sunila Gollapudi
Author Profile Icon Sunila Gollapudi
Sunila Gollapudi
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introduction to Machine learning FREE CHAPTER 2. Machine learning and Large-scale datasets 3. An Introduction to Hadoop's Architecture and Ecosystem 4. Machine Learning Tools, Libraries, and Frameworks 5. Decision Tree based learning 6. Instance and Kernel Methods Based Learning 7. Association Rules based learning 8. Clustering based learning 9. Bayesian learning 10. Regression based learning 11. Deep learning 12. Reinforcement learning 13. Ensemble learning 14. New generation data architectures for Machine learning Index

Chapter 7. Association Rules based learning

We have covered Decision tree, instance and kernel-based supervised and unsupervised learning methods in the previous chapters. We also explored the most commonly used algorithms across these learning algorithms in the previous chapters. In this chapter, we will cover association rule based learning and, in specific, Apriori and FP-Growth algorithms among others. We will learn the basics of this technique and get hands-on implementation guidance using Apache Mahout, R, Julia, Apache Spark, and Python. The following figure depicts different learning models covered in this book. The techniques highlighted in orange will be dealt with in detail in this chapter.

Association Rules based learning

The following topics are covered in depth in this chapter:

  • Understanding the basics and core principles of association rules based learning models
  • Core use cases for association rule such as the Market Basket problem
  • Key terms such as itemsets, lift, support, confidence and frequent...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime