Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Analysis Using Jupyter Notebook

You're reading from   Practical Data Analysis Using Jupyter Notebook Learn how to speak the language of data by extracting useful and actionable insights using Python

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781838826031
Length 322 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Marc Wintjen Marc Wintjen
Author Profile Icon Marc Wintjen
Marc Wintjen
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Data Analysis Essentials
2. Fundamentals of Data Analysis FREE CHAPTER 3. Overview of Python and Installing Jupyter Notebook 4. Getting Started with NumPy 5. Creating Your First pandas DataFrame 6. Gathering and Loading Data in Python 7. Section 2: Solutions for Data Discovery
8. Visualizing and Working with Time Series Data 9. Exploring, Cleaning, Refining, and Blending Datasets 10. Understanding Joins, Relationships, and Aggregates 11. Plotting, Visualization, and Storytelling 12. Section 3: Working with Unstructured Big Data
13. Exploring Text Data and Unstructured Data 14. Practical Sentiment Analysis 15. Bringing It All Together 16. Works Cited
17. Other Books You May Enjoy

Techniques for manipulating tabular data

Now that we have a better understanding of array data structures from using the NumPy library in Chapter 3, Getting Started with NumPy, we can now expand our data analysis expertise. We will do this by working with tabular data and focusing on a powerful library available in Python named pandas, which is available to use in our Jupyter notebooks.

The pandas library extends our ability to analyze structured data and was introduced as a Python library back in 2008 by Wes McKinney. McKinney recognized the power of extending the Python language by using libraries and the need to fill the gap that existed between data preparation and data insights by carrying out the entire data analysis workflow in Python without having to switch to a more domain-specific language such as R.

The pandas Python library name was taken from the term panel data (by McKinney) by shortening and combining the terms to get pan and da. Panel data is defined...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image