Grouping by continuous variables
When grouping in pandas, you typically use columns with discrete repeating values. If there are no repeated values, then grouping would be pointless as there would only be one row per group. Continuous numeric columns typically have few repeated values and are generally not used to form groups. However, if we can transform columns with continuous values into a discrete column by placing each value in a bin, rounding them, or using some other mapping, then grouping with them makes sense.
In this recipe, we explore the flights dataset to discover the distribution of airlines for different travel distances. This allows us, for example, to find the airline that makes the most flights between 500 and 1,000 miles. To accomplish this, we use the pandas cut
function to discretize the distance of each flight flown.
How to do it…
- Read in the flights dataset:
>>> flights = pd.read_csv('data/flights.csv') >...