Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
MLOps with Red Hat OpenShift

You're reading from   MLOps with Red Hat OpenShift A cloud-native approach to machine learning operations

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805120230
Length 238 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ross Brigoli Ross Brigoli
Author Profile Icon Ross Brigoli
Ross Brigoli
Faisal Masood Faisal Masood
Author Profile Icon Faisal Masood
Faisal Masood
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Introduction
2. Chapter 1: Introduction to MLOps and OpenShift FREE CHAPTER 3. Part 2: Provisioning and Configuration
4. Chapter 2: Provisioning an MLOps Platform in the Cloud 5. Chapter 3: Building Machine Learning Models with OpenShift 6. Part 3: Operating ML Workloads
7. Chapter 4: Managing a Model Training Workflow 8. Chapter 5: Deploying ML Models as a Service 9. Chapter 6: Operating ML Workloads 10. Chapter 7: Building a Face Detector Using the Red Hat ML Platform 11. Index 12. Other Books You May Enjoy

Operating ML Workloads

In the previous chapter, you learned how to automate model deployments through OpenShift Data Science (ODS) pipelines. This chapter will focus on the operational tasks of MLOps. This includes monitoring and logging, using the in-built tools of Red Hat OpenShift Data Science. We will not cover the common OpenShift operation and administration tasks in this chapter as that is beyond the scope of this book. However, we will talk about some of the OpenShift concepts you need to know to understand the topics in this chapter.

The exercises in this chapter require a basic understanding of OpenShift and/or Kubernetes as well as basic knowledge of Prometheus time-series databases and Grafana visualization dashboards. The following topics will be covered in this chapter:

  • Monitoring ML models
  • Logging model inference
  • Cost optimization

The materials required for this chapter can be found in the GitHub repository of this book. The files that you will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image