Chapter 10: Operationalizing PyTorch Models into Production
So far in this book, we have covered how to train and test different kinds of machine learning models using PyTorch. We started by reviewing the basic elements of PyTorch that enable us to work on deep learning tasks efficiently. Then, we explored a wide range of deep learning model architectures and applications that can be written using PyTorch.
In this chapter, we will be focusing on taking these models into production. But what does that mean? Basically, we will be discussing the different ways of taking a trained and tested model (object) into a separate environment where it can be used to make predictions or inferences on incoming data. This is what is referred to as the productionization of a model, as the model is being deployed into a production system.
We will begin by discussing some common approaches you can take to serve PyTorch models in production environments, starting from defining a simple model inference...