- Apply a thresholding operation using cv2.threshold() with a threshold value of 100 and using the cv2.THRESH_BINARY thresholding type.
- Apply an adaptive thresholding operation using cv2.adapativeThreshold() ,cv2.ADAPTIVE_THRESH_MEAN_C, C=2 and blockSize=9.
- Apply Otsu's thresholding using the cv2.THRESH_BINARY thresholding type.
- Apply triangle thresholding using the cv2.THRESH_BINARY thresholding type.
- Apply Otsu's thresholding using scikit-image.
- Apply triangle thresholding using scikit-image.
- Apply Niblack's thresholding using scikit-image.
- Apply Sauvola's thresholding using scikit-image and a window size of 25.
- Modify the thresholding_example.py script in order to make use of np.arange(), with the purpose of defining the threshold values to apply to the cv2.threshold() function. Afterwards, call the cv2.threshold() function with the defined threshold...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand