When you have a linear line, you take the derivative so the derivative shows the slope of this line. Gradient is a generalization of the derivative when you have a multiple variable in your function, therefore the result of gradient is actually a vector function rather than a scalar value in derivative. The main goal of ML is actually finding the best model that fits your data. You can evaluate the meaning of the best as minimizing your loss function or objective function. Gradient is used for finding the value of the coefficients or a function that will minimize your loss or cost function. A well-known way of finding optimum points is taking the derivative of the objective function then setting it to zero to find your model coefficients. If you have more than one coefficient then it becomes a gradient rather than a derivative, and it becomes a vector equation...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine