Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Data analysis with R

You're reading from   Mastering Data analysis with R Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783982028
Length 396 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gergely Daróczi Gergely Daróczi
Author Profile Icon Gergely Daróczi
Gergely Daróczi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Hello, Data! 2. Getting Data from the Web FREE CHAPTER 3. Filtering and Summarizing Data 4. Restructuring Data 5. Building Models (authored by Renata Nemeth and Gergely Toth) 6. Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth) 7. Unstructured Data 8. Polishing Data 9. From Big to Small Data 10. Classification and Clustering 11. Social Network Analysis of the R Ecosystem 12. Analyzing Time-series 13. Data Around Us 14. Analyzing the R Community A. References Index

Spatial statistics


Most exploratory data analysis projects dealing with spatial data start by looking for, and potentially filtering, spatial autocorrelation. In simple terms, this means that we are looking for spatial effects in the data—for instance, the similarities of some data points can be (partly) explained by the short distance between them; further points seem to differ a lot more. There is nothing surprising in this statement; probably all of you agree with this. But how can we test this on real data with analytical tools?

Moran's I index is a well-known and generally used measure to test whether spatial autocorrelation is present or not in the variable of interest. This is a quite simple statistical test with the null hypothesis that there is no spatial autocorrelation in the dataset.

With the current data structure we have, probably the easiest way to compute Moran's I is to load the ape package, and pass the similarity matrix along with the variable of interest to the Moran.I...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime