Other GNN layers and recent developments
This section will introduce a selection of additional layers that you can utilize in your GNNs, in addition to providing a high-level overview of some recent developments in the field. While we will provide background on the intuition behind these layers and their implementations, these concepts can become a little complicated mathematically speaking, but don’t get discouraged. These are optional topics, and it is not necessary to grasp the minutiae of all these implementations. Understanding the general ideas behind the layers will be sufficient to experiment with the PyTorch Geometric implementations that we reference.
The following subsections will introduce spectral graph convolution layers, graph pooling layers, and normalization layers for graphs. Lastly, the final subsection will provide a bird’s eye view of some more advanced kinds of graph neural networks.
Spectral graph convolutions
The graph convolutions...