Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Solutions

You're reading from   Machine Learning Solutions Expert techniques to tackle complex machine learning problems using Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788390040
Length 566 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jalaj Thanaki Jalaj Thanaki
Author Profile Icon Jalaj Thanaki
Jalaj Thanaki
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Machine Learning Solutions
Foreword
Contributors
Preface
1. Credit Risk Modeling FREE CHAPTER 2. Stock Market Price Prediction 3. Customer Analytics 4. Recommendation Systems for E-Commerce 5. Sentiment Analysis 6. Job Recommendation Engine 7. Text Summarization 8. Developing Chatbots 9. Building a Real-Time Object Recognition App 10. Face Recognition and Face Emotion Recognition 11. Building Gaming Bot List of Cheat Sheets Strategy for Wining Hackathons Index

Chapter 1. Credit Risk Modeling

All the chapters in this book are practical applications. We will develop one application per chapter. We will understand about the application, and choose the proper dataset in order to develop the application. After analyzing the dataset, we will build the base-line approach for the particular application. Later on, we will develop a revised approach that resolves the shortcomings of the baseline approach. Finally, we will see how we can develop the best possible solution using the appropriate optimization strategy for the given application. During this development process, we will learn necessary key concepts about Machine Learning techniques. I would recommend my reader run the code which is given in this book. That will help you understand concepts really well.

In this chapter, we will look at one of the many interesting applications of predictive analysis. I have selected the finance domain to begin with, and we are going to build an algorithm that can predict loan defaults. This is one of the most widely used predictive analysis applications in the finance domain. Here, we will look at how to develop an optimal solution for predicting loan defaults. We will cover all of the elements that will help us build this application.

We will cover the following topics in this chapter:

  • Introducing the problem statement

  • Understanding the dataset

    • Understanding attributes of the dataset

    • Data analysis

  • Features engineering for the baseline model

  • Selecting an ML algorithm

  • Training the baseline model

  • Understanding the testing matrix

  • Testing the baseline model

  • Problems with the existing approach

  • How to optimize the existing approach

    • Understanding key concepts to optimize the approach

    • Hyperparameter tuning

  • Implementing the revised approach

    • Testing the revised approach

    • Understanding the problem with the revised approach

  • The best approach

  • Implementing the best approach

  • Summary

You have been reading a chapter from
Machine Learning Solutions
Published in: Apr 2018
Publisher: Packt
ISBN-13: 9781788390040
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image