Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning on Kubernetes

You're reading from   Machine Learning on Kubernetes A practical handbook for building and using a complete open source machine learning platform on Kubernetes

Arrow left icon
Product type Paperback
Published in Jun 2022
Publisher Packt
ISBN-13 9781803241807
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ross Brigoli Ross Brigoli
Author Profile Icon Ross Brigoli
Ross Brigoli
Faisal Masood Faisal Masood
Author Profile Icon Faisal Masood
Faisal Masood
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: The Challenges of Adopting ML and Understanding MLOps (What and Why)
2. Chapter 1: Challenges in Machine Learning FREE CHAPTER 3. Chapter 2: Understanding MLOps 4. Chapter 3: Exploring Kubernetes 5. Part 2: The Building Blocks of an MLOps Platform and How to Build One on Kubernetes
6. Chapter 4: The Anatomy of a Machine Learning Platform 7. Chapter 5: Data Engineering 8. Chapter 6: Machine Learning Engineering 9. Chapter 7: Model Deployment and Automation 10. Part 3: How to Use the MLOps Platform and Build a Full End-to-End Project Using the New Platform
11. Chapter 8: Building a Complete ML Project Using the Platform 12. Chapter 9: Building Your Data Pipeline 13. Chapter 10: Building, Deploying, and Monitoring Your Model 14. Chapter 11: Machine Learning on Kubernetes 15. Other Books You May Enjoy

Deploying the model as a service

In this section, you will deploy your model as a REST service. You will see that using the details mentioned in Chapter 7, Model Deployment and Automation, the team can package and deploy the model as a service. This service will then be consumed by users of your model. We highly encourage you to refresh your knowledge from Chapter 7, Model Deployment and Automation before proceeding to this section.

In Chapter 7, Model Deployment and Automation, you have deployed the model with a Predictor class, which exposes the model as a REST service. You will use the same class here, however, in the flight project, you applied categorical encoding to the data before it was used for model training. This means that you will need to apply the same encoding to the input data at the inferencing time. Recall that, earlier in this chapter, you saved the file as FlightsDelayOrdinalEncoder.pkl and it is available in the MLflow repository.

The next step is to write...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime