Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Shiny

You're reading from   Learning Shiny Make the most of R's dynamic capabilities and implement web applications with Shiny

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781785280900
Length 246 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Hernan Resnizky Hernan Resnizky
Author Profile Icon Hernan Resnizky
Hernan Resnizky
Hernan Resnizky Hernan Resnizky
Author Profile Icon Hernan Resnizky
Hernan Resnizky
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing R, RStudio, and Shiny FREE CHAPTER 2. First Steps towards Programming in R 3. An Introduction to Data Processing in R 4. Shiny Structure – Reactivity Concepts 5. Shiny in Depth – A Deep Dive into Shiny's World 6. Using R's Visualization Alternatives in Shiny 7. Advanced Functions in Shiny 8. Shiny and HTML/JavaScript 9. Interactive Graphics in Shiny 10. Sharing Applications 11. From White Paper to a Full Application Index

UI.R partial coding


As it was said before, the input widgets are the first part of the application that must be coded. In this case, almost all the widgets are on the side panel except the selectors that are used in the education-descending line chart and the earnings chi-square test that are in their corresponding tabs. Also, it is recommended to generate the application's frontend structure at this stage. So, the UI.R code that we have so far would be as shown in the following section.

UI.R

As it may be noted, the arguments of the widgets builders are determined dynamically. The reason behind this is exactly the same as in the creation of factor.vars in global.R: avoid hardcoding. Of course, there are some cases (for example, the sex variable) where this will be unnecessary, as it is impossible that the categories were changed even with a change in the data source. However, in cases such as age, it is perfectly possible that the minimum and maximum values change. So, this dynamic referencing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime