Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Apache Spark 2

You're reading from   Learning Apache Spark 2 A beginner's guide to real-time Big Data processing using the Apache Spark framework

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781785885136
Length 356 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Muhammad Asif Abbasi Muhammad Asif Abbasi
Author Profile Icon Muhammad Asif Abbasi
Muhammad Asif Abbasi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Architecture and Installation FREE CHAPTER 2. Transformations and Actions with Spark RDDs 3. ETL with Spark 4. Spark SQL 5. Spark Streaming 6. Machine Learning with Spark 7. GraphX 8. Operating in Clustered Mode 9. Building a Recommendation System 10. Customer Churn Prediction Theres More with Spark

What is an RDD?


What's in a name might be true for a rose, but perhaps not for Resilient Distributed Datasets (RDD) which, in essence, describes what an RDD is.

They are basically datasets, which are distributed across a cluster (remember the Spark framework is inherently based on an MPP architecture), and provide resilience (automatic failover) by nature.

Before we go into any further detail, let's try to understand this a little bit, and again we are trying to be as abstract as possible. Let us assume that you have a sensor data from aircraft sensors and you want to analyze the data irrespective of its size and locality. For example, an Airbus A350 has roughly 6000 sensors across the entire plane and generates 2.5 TB data per day, while the newer model expected to launch in 2020 will generate roughly 7.5 TB per day. From a data engineering point of view, it might be important to understand the data pipeline, but from an analyst and a data scientist point of view, the major concern is to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image