Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java for Data Science

You're reading from   Java for Data Science Examine the techniques and Java tools supporting the growing field of data science

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781785280115
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Data Science FREE CHAPTER 2. Data Acquisition 3. Data Cleaning 4. Data Visualization 5. Statistical Data Analysis Techniques 6. Machine Learning 7. Neural Networks 8. Deep Learning 9. Text Analysis 10. Visual and Audio Analysis 11. Mathematical and Parallel Techniques for Data Analysis 12. Bringing It All Together

Deep learning approaches

Deep learning networks are often described as neural networks that use multiple intermediate layers. Each layer will train on the outputs of a previous layer potentially identifying features and subfeatures of a dataset. The features refer to those aspects of the data that may be of interest. In Chapter 8, Deep Learning, we will examine these types of networks and how they can support several different data science tasks.

These networks often work with unstructured and unlabeled datasets, which is the vast majority of the data available today. A typical approach is to take the data, identify features, and then use these features and their corresponding layers to reconstruct the original dataset, thus validating the network. The Restricted Boltzmann Machines (RBM) is a good example of the application of this approach.

The deep learning network needs to ensure that the results are accurate and minimizes any error that can creep into the process. This is accomplished by adjusting the internal weights assigned to neurons based on what is known as gradient descent. This represents the slope of the weight changes. The approach modifies the weight so as to minimize the error and also speeds up the learning process.

There are several types of networks that have been classified as a deep learning network. One of these is an autoencoder network. In this network, the layers are symmetrical where the number of input values is the same as the number of output values and the intermediate layers effectively compress the data to a single smaller internal layer. Each layer of the autoencoder is a RBM.

This structure is reflected in the following example, which will extract the numbers found in a set of images containing hand-written numbers. The details of the complete example are not shown here, but notice that 1,000 input and output values are used along with internal layers consisting of RBMs. The size of the layers are specified in the nOut and nIn methods.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() 
        .seed(seed) 
        .iterations(numberOfIterations) 
        .optimizationAlgo( 
           OptimizationAlgorithm.LINE_GRADIENT_DESCENT) 
        .list() 
        .layer(0, new RBM.Builder() 
            .nIn(numberOfRows * numberOfColumns).nOut(1000) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) 
        .layer(1, new RBM.Builder().nIn(1000).nOut(500) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) 
        .layer(2, new RBM.Builder().nIn(500).nOut(250) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) 
        .layer(3, new RBM.Builder().nIn(250).nOut(100) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) 
        .layer(4, new RBM.Builder().nIn(100).nOut(30) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) //encoding stops 
        .layer(5, new RBM.Builder().nIn(30).nOut(100) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) //decoding starts 
        .layer(6, new RBM.Builder().nIn(100).nOut(250) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) 
        .layer(7, new RBM.Builder().nIn(250).nOut(500) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) 
        .layer(8, new RBM.Builder().nIn(500).nOut(1000) 
            .lossFunction(LossFunctions.LossFunction.RMSE_XENT) 
            .build()) 
        .layer(9, new OutputLayer.Builder( 
                LossFunctions.LossFunction.RMSE_XENT).nIn(1000) 
                .nOut(numberOfRows * numberOfColumns).build()) 
        .pretrain(true).backprop(true) 
        .build(); 

Once the model has been trained, it can be used for predictive and searching tasks. With a search, the compressed middle layer can be used to match other compressed images that need to be classified.

You have been reading a chapter from
Java for Data Science
Published in: Jan 2017
Publisher: Packt
ISBN-13: 9781785280115
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime