Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Interpretable Machine Learning with Python
Interpretable Machine Learning with Python

Interpretable Machine Learning with Python: Learn to build interpretable high-performance models with hands-on real-world examples

eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Interpretable Machine Learning with Python

Section 1: Introduction to Machine Learning Interpretation

In this section, you will recognize the importance of interpretability in business and understand its key aspects and challenges.

This section includes the following chapters:

  • Chapter 1, Interpretation, Interpretability and Explainability; and why does it all matter?
  • Chapter 2, Key Concepts of Interpretability
  • Chapter 3, Interpretation Challenges
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Learn how to extract easy-to-understand insights from any machine learning model
  • Become well-versed with interpretability techniques to build fairer, safer, and more reliable models
  • Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models

Description

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.

Who is this book for?

This book is primarily written for data scientists, machine learning developers, and data stewards who find themselves under increasing pressures to explain the workings of AI systems, their impacts on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a solid grasp on the Python programming language and ML fundamentals is needed to follow along.

What you will learn

  • Recognize the importance of interpretability in business
  • Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes
  • Become well-versed in interpreting models with model-agnostic methods
  • Visualize how an image classifier works and what it learns
  • Understand how to mitigate the influence of bias in datasets
  • Discover how to make models more reliable with adversarial robustness
  • Use monotonic constraints to make fairer and safer models

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Mar 26, 2021
Length: 736 pages
Edition : 1st
Language : English
ISBN-13 : 9781800203907
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Mar 26, 2021
Length: 736 pages
Edition : 1st
Language : English
ISBN-13 : 9781800203907
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 125.97
Interpretable Machine Learning with Python
€41.99
Graph Machine Learning
€39.99
Machine Learning for Algorithmic Trading
€43.99
Total 125.97 Stars icon

Table of Contents

18 Chapters
Section 1: Introduction to Machine Learning Interpretation Chevron down icon Chevron up icon
Chapter 1: Interpretation, Interpretability, and Explainability; and Why Does It All Matter? Chevron down icon Chevron up icon
Chapter 2: Key Concepts of Interpretability Chevron down icon Chevron up icon
Chapter 3: Interpretation Challenges Chevron down icon Chevron up icon
Section 2: Mastering Interpretation Methods Chevron down icon Chevron up icon
Chapter 4: Fundamentals of Feature Importance and Impact Chevron down icon Chevron up icon
Chapter 5: Global Model-Agnostic Interpretation Methods Chevron down icon Chevron up icon
Chapter 6: Local Model-Agnostic Interpretation Methods Chevron down icon Chevron up icon
Chapter 7: Anchor and Counterfactual Explanations Chevron down icon Chevron up icon
Chapter 8: Visualizing Convolutional Neural Networks Chevron down icon Chevron up icon
Chapter 9: Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis Chevron down icon Chevron up icon
Section 3:Tuning for Interpretability Chevron down icon Chevron up icon
Chapter 10: Feature Selection and Engineering for Interpretability Chevron down icon Chevron up icon
Chapter 11: Bias Mitigation and Causal Inference Methods Chevron down icon Chevron up icon
Chapter 12: Monotonic Constraints and Model Tuning for Interpretability Chevron down icon Chevron up icon
Chapter 13: Adversarial Robustness Chevron down icon Chevron up icon
Chapter 14: What's Next for Machine Learning Interpretability? Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7
(26 Ratings)
5 star 84.6%
4 star 11.5%
3 star 0%
2 star 0%
1 star 3.8%
Filter icon Filter
Top Reviews

Filter reviews by




M. Borel Apr 27, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
tl;dr This is a beast of a book. Definitely recommend to have as a permanent reference when working in interpretable machine learning.I have found this to be insightful (although I still have halfway to go). For beginners, this will be a great introduction and reference -- conventions, terms and code examples are thorough and well explained (which is probably why the book is lengthy). For intermediates and more advanced folk this is perfect, there are enough gold nuggets of information spread throughout the book that it will become a great resource for future reference. It feels like the book covers the majority of (if not all of the) topics needed to tackle interpretable machine learning today. In most books I’ve read, whether coding cookbooks or theoretical ones, the number of examples provided are few, but in this book, they are abundant. Also I would get the ebook, unless you prefer a hardcopy.
Amazon Verified review Amazon
Alexandra Arteaga Jun 20, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I usually go on reddit and do heavy research before buying a book (there are so many!!). This time I took a gamble on this book after encountering it on linkedin. I was not disappointed!! I’ve been trying to enter the machine learning field as a novice and wasn’t sure how to start but this book not only goes through detailed examples, it goes through big picture ideas, ideas that we have to be mindful of as machine learning, and deep learning for that matter, continues to encompass our every day. Definitely recommend!
Amazon Verified review Amazon
Jaime Penser Jun 19, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Because this book is getting a lot of attention I decided to buy it. Ok, full disclosure, not an expert in this field, but have been trying to keep up with tech with leisure reading for principles and ideas I can apply in my field. The book is technical, it’s not a walk in the park, but even with my basic statistics I was able to follow a lot of it. Very rich with examples and would recommend it for other people like me trying to get their feet wet.
Amazon Verified review Amazon
Himanshu Jun 17, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is great for python practitioners of Machine Learning. It has various code examples covering the majority of ML concepts. The book is written in such a way that it's is very easy to follow up (for all levels of Machine Learning practitioners - beginner/intermediate/advanced).It talks about basics concepts, advanced concepts, code snippets to follow through, it's a complete learning package.
Amazon Verified review Amazon
Anthony Maddalone Apr 19, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is a rare find. Too often the machine learning world is only focused on the building of ML models, with the interpretation really considered almost an after thought it seems. This book takes a different approach and teaches the reader of any level how to make sense of the "why's" and the "how's". I'm not even completely through the book, but I had to put down some thoughts. If you're new to the ML world, or even experienced this will be the best book purchase of 2021.. highly recommended!
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.