Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Artificial Intelligence for Cybersecurity

You're reading from   Hands-On Artificial Intelligence for Cybersecurity Implement smart AI systems for preventing cyber attacks and detecting threats and network anomalies

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781789804027
Length 342 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Alessandro Parisi Alessandro Parisi
Author Profile Icon Alessandro Parisi
Alessandro Parisi
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: AI Core Concepts and Tools of the Trade
2. Introduction to AI for Cybersecurity Professionals FREE CHAPTER 3. Setting Up Your AI for Cybersecurity Arsenal 4. Section 2: Detecting Cybersecurity Threats with AI
5. Ham or Spam? Detecting Email Cybersecurity Threats with AI 6. Malware Threat Detection 7. Network Anomaly Detection with AI 8. Section 3: Protecting Sensitive Information and Assets
9. Securing User Authentication 10. Fraud Prevention with Cloud AI Solutions 11. GANs - Attacks and Defenses 12. Section 4: Evaluating and Testing Your AI Arsenal
13. Evaluating Algorithms 14. Assessing your AI Arsenal 15. Other Books You May Enjoy

Different ML algorithms for botnet detection

From what we have described so far, it is clear that it is not advisable to exclusively rely on automated tools for network anomaly detection, but it may be more productive to adopt AI algorithms that are able to dynamically learn how to recognize the presence of any anomalies within the network traffic, thus allowing the analyst to perform an in-depth analysis of only really suspicious cases. Now, we will demonstrate the use of different ML algorithms for network anomaly detection, which can also be used to identify a botnet.

The selected features in our example consist of the values of network latency and network throughput. In our threat model, anomalous values ​​associated with these features can be considered as representative of the presence of a botnet.

For each example, the accuracy of the algorithm is calculated...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime