Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hadoop Real-World Solutions Cookbook- Second Edition

You're reading from   Hadoop Real-World Solutions Cookbook- Second Edition Over 90 hands-on recipes to help you learn and master the intricacies of Apache Hadoop 2.X, YARN, Hive, Pig, Oozie, Flume, Sqoop, Apache Spark, and Mahout

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher
ISBN-13 9781784395506
Length 290 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Tanmay Deshpande Tanmay Deshpande
Author Profile Icon Tanmay Deshpande
Tanmay Deshpande
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Hadoop 2.X FREE CHAPTER 2. Exploring HDFS 3. Mastering Map Reduce Programs 4. Data Analysis Using Hive, Pig, and Hbase 5. Advanced Data Analysis Using Hive 6. Data Import/Export Using Sqoop and Flume 7. Automation of Hadoop Tasks Using Oozie 8. Machine Learning and Predictive Analytics Using Mahout and R 9. Integration with Apache Spark 10. Hadoop Use Cases Index

Performing table joins in Hive


In the previous chapter, we talked about how to perform joins in Pig. In this recipe, we are going to take a look at how to perform joins in Hive. Hive supports various types of joins such as inner, outer, and so on.

Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...

To perform joins, we will need two types of datasets, which have something in common to join. Consider a situation where we have two employee tables and departments, and every employee table has a structure (ID, name, salary, and department ID) and every department table has an ID and a name. We will quickly create tables and load data into them:

 CREATE TABLE emp(
 id INT,
 name STRING,
 salary DOUBLE,
 deptId INT)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '|'
 STORED AS TEXTFILE;
 
 LOAD DATA LOCAL INPATH 'emp.txt' INTO TABLE emp;
    hive> select * from emp;
    OK
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime