Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Feature Engineering Made Easy

You're reading from   Feature Engineering Made Easy Identify unique features from your dataset in order to build powerful machine learning systems

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781787287600
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Divya Susarla Divya Susarla
Author Profile Icon Divya Susarla
Divya Susarla
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Feature Engineering FREE CHAPTER 2. Feature Understanding – What's in My Dataset? 3. Feature Improvement - Cleaning Datasets 4. Feature Construction 5. Feature Selection 6. Feature Transformations 7. Feature Learning 8. Case Studies 9. Other Books You May Enjoy

Parametric assumptions of data


When we say parametric assumptions, we are referring to base assumptions that algorithms make about the shape of the data. In the previous chapter, while exploring principal component analysis (PCA), we discovered that the end result of the algorithm produced components that we could use to transform data through a single matrix multiplication. The assumption that we were making was that the original data took on a shape that could be decomposed and represented by a single linear transformation (the matrix operation). But what if that is not true? What if PCA is unable to extract useful features from the original dataset? Algorithms such as PCA and linear discriminate analysis (LDA) will always be able to find features, but they may not be useful at all. Moreover, these algorithms rely on a predetermined equation and will always output the same features each and every time they are run. This is why we consider both LDA and PCA as being linear transformations...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image