Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Effective Concurrency in Go

You're reading from   Effective Concurrency in Go Develop, analyze, and troubleshoot high performance concurrent applications with ease

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781804619070
Length 212 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Burak Serdar Burak Serdar
Author Profile Icon Burak Serdar
Burak Serdar
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Concurrency – A High-Level Overview 2. Chapter 2: Go Concurrency Primitives FREE CHAPTER 3. Chapter 3: The Go Memory Model 4. Chapter 4: Some Well-Known Concurrency Problems 5. Chapter 5: Worker Pools and Pipelines 6. Chapter 6: Error Handling 7. Chapter 7: Timers and Tickers 8. Chapter 8: Handling Requests Concurrently 9. Chapter 9: Atomic Memory Operations 10. Chapter 10: Troubleshooting Concurrency Issues 11. Index 12. Other Books You May Enjoy

Rate limiting

Limiting the rate of requests for a resource is important to maintain a predictable quality of service. There are several ways rate control can be achieved. We will study two implementations of the same algorithm. The first one is a relatively simple implementation of the token bucket algorithm that uses channels, a ticker, and a goroutine. Then, we will study a more advanced implementation that requires fewer resources.

First, let’s take a look at the token bucket algorithm and show how it is used for rate limiting. Imagine a fixed-sized bucket containing tokens. There is a producer process that deposits tokens into this bucket at a fixed rate, say two tokens/second. Every 500 milliseconds, this process adds a token to the bucket if the bucket has empty slots. If the bucket is full, it waits for another 500 milliseconds and checks the bucket again. There is also a consumer process that consumes tokens at random intervals. However, in order for the consumer...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image