Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Theano

You're reading from   Deep Learning with Theano Perform large-scale numerical and scientific computations efficiently

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786465825
Length 300 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Christopher Bourez Christopher Bourez
Author Profile Icon Christopher Bourez
Christopher Bourez
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Theano Basics 2. Classifying Handwritten Digits with a Feedforward Network FREE CHAPTER 3. Encoding Word into Vector 4. Generating Text with a Recurrent Neural Net 5. Analyzing Sentiment with a Bidirectional LSTM 6. Locating with Spatial Transformer Networks 7. Classifying Images with Residual Networks 8. Translating and Explaining with Encoding – decoding Networks 9. Selecting Relevant Inputs or Memories with the Mechanism of Attention 10. Predicting Times Sequences with Advanced RNN 11. Learning from the Environment with Reinforcement 12. Learning Features with Unsupervised Generative Networks 13. Extending Deep Learning with Theano Index

Summary

The first concept is symbolic computing, which consists in building graph, that can be compiled and then executed wherever we decide in the Python code. A compiled graph is acting as a function that can be called anywhere in the code. The purpose of symbolic computing is to have an abstraction of the architecture on which the graph will be executed, and which libraries to compile it with. As presented, symbolic variables are typed for the target architecture during compilation.

The second concept is the tensor, and the operators provided to manipulate tensors. Most of these were already available in CPU-based computation libraries, such as NumPy or SciPy. They have simply been ported to symbolic computing, requiring their equivalents on GPU. They use underlying acceleration libraries, such as BLAS, Nvidia Cuda, and cuDNN.

The last concept introduced by Theano is automatic differentiation—a very useful feature in deep learning to backpropagate errors and adjust the weights following the gradients, a process known as gradient descent. Also, the scan operator enables us to program loops (while..., for...,) on the GPU, and, as other operators, available through backpropagation as well, simplifying the training of models a lot.

We are now ready to apply this to deep learning in the next few chapters and have a look at this knowledge in practice.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image