Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning Essentials

You're reading from   Deep Learning Essentials Your hands-on guide to the fundamentals of deep learning and neural network modeling

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781785880360
Length 284 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Wei Di Wei Di
Author Profile Icon Wei Di
Wei Di
Anurag Bhardwaj Anurag Bhardwaj
Author Profile Icon Anurag Bhardwaj
Anurag Bhardwaj
Jianing Wei Jianing Wei
Author Profile Icon Jianing Wei
Jianing Wei
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Why Deep Learning? FREE CHAPTER 2. Getting Yourself Ready for Deep Learning 3. Getting Started with Neural Networks 4. Deep Learning in Computer Vision 5. NLP - Vector Representation 6. Advanced Natural Language Processing 7. Multimodality 8. Deep Reinforcement Learning 9. Deep Learning Hacks 10. Deep Learning Trends 11. Other Books You May Enjoy

Deep Reinforcement Learning

In previous chapters, we covered the basics of deep learning as applied to the fields of computer vision and natural language processing (NLP). Most of these techniques can be broadly classified as supervised learning techniques, where the goal is to learn patterns from training data and apply them to unseen test instances. This pattern learning is often represented as a model learnt over large volumes of training data. Obtaining such large volumes of labeled data is often a challenge. This necessitates a new approach to learning patterns from data with or without labels. To ensure correct training, minimal supervision may be provided in the form of a reward if the model correctly learns a pattern, or a penalty otherwise. Reinforcement learning provides a statistical framework to achieve this task in a principled manner. In this chapter, we will cover...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image