Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Observability for Data Engineering

You're reading from   Data Observability for Data Engineering Proactive strategies for ensuring data accuracy and addressing broken data pipelines

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781804616024
Length 228 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Michele Pinto Michele Pinto
Author Profile Icon Michele Pinto
Michele Pinto
Sammy El Khammal Sammy El Khammal
Author Profile Icon Sammy El Khammal
Sammy El Khammal
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Introduction to Data Observability
2. Chapter 1: Fundamentals of Data Quality Monitoring FREE CHAPTER 3. Chapter 2: Fundamentals of Data Observability 4. Part 2: Implementing Data Observability
5. Chapter 3: Data Observability Techniques 6. Chapter 4: Data Observability Elements 7. Chapter 5: Defining Rules on Indicators 8. Part 3: How to adopt Data Observability in your organization
9. Chapter 6: Root Cause Analysis 10. Chapter 7: Optimizing Data Pipelines 11. Chapter 8: Organizing Data Teams and Measuring the Success of Data Observability 12. Part 4: Appendix
13. Chapter 9: Data Observability Checklist 14. Chapter 10: Pathway to Data Observability 15. Index 16. Other Books You May Enjoy

Defining Rules on Indicators

In the previous chapters, we saw how you could collect events synchronously in your data applications. We also discussed what contextual information you need in order to draw the big picture of what’s happening inside the applications.

Now that you have a lot of contextual information, it is high time to turn it into actionable insights. The metrics you collect during the pipeline execution need to reassure all the stakeholders about the proper execution of the data applications. All the observers of the pipeline need to be informed about how the data pipeline is behaving.

To maintain the trust of data producers and data consumers, we will introduce the concept of expectations, which will define what the engineer needs to achieve in order to keep the pipeline in good shape. These expectations, composed of metrics and rules, will act as sensors to know whether the applications are working as expected or not.

These rules are a key component...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime