Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Creative Projects for Rust Programmers

You're reading from   Creative Projects for Rust Programmers Build exciting projects on domains such as web apps, WebAssembly, games, and parsing

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781789346220
Length 404 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Carlo Milanesi Carlo Milanesi
Author Profile Icon Carlo Milanesi
Carlo Milanesi
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Rust 2018: Productivity 2. Storing and Retrieving Data FREE CHAPTER 3. Creating a REST Web Service 4. Creating a Full Server-Side Web App 5. Creating a Client-Side WebAssembly App Using Yew 6. Creating a WebAssembly Game Using Quicksilver 7. Creating a Desktop Two-Dimensional Game Using ggez 8. Using a Parser Combinator for Interpreting and Compiling 9. Creating a Computer Emulator Using Nom 10. Creating a Linux Kernel Module 11. The Future of Rust 12. Assessments 13. Other Books You May Enjoy

Understanding linear algebra

Linear algebra is the sector of mathematics regarding systems of first-degree equations, such as the following:

This system of equations has a solution to certain values (that is, ). In addition to being useful for solving systems of equations, the concepts and methods of linear algebra are also useful for representing and manipulating geometrical entities.

In particular, any position on a plane can be represented by two coordinates, x and y, and any position in space can be represented by three coordinates, x, y, and z. In addition, any translation of a position on a plane can be represented by two coordinates, Δx and Δy, and any translation of a position in space can be represented by three coordinates, Δx, Δy, and Δz.

For example, consider two positions on a plane:

  • p1: Its coordinates are x = 4, y = 7.
  • p2: Its coordinates are x = 10, y = 16.

Consider two translations on that plane:

  • t1: Its coordinates are .
  • t2: Its coordinates...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image