Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Scientist Associate Certification Guide

You're reading from   Azure Data Scientist Associate Certification Guide A hands-on guide to machine learning in Azure and passing the Microsoft Certified DP-100 exam

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781800565005
Length 448 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Andreas Botsikas Andreas Botsikas
Author Profile Icon Andreas Botsikas
Andreas Botsikas
Michael Hlobil Michael Hlobil
Author Profile Icon Michael Hlobil
Michael Hlobil
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Starting your cloud-based data science journey
2. Chapter 1: An Overview of Modern Data Science FREE CHAPTER 3. Chapter 2: Deploying Azure Machine Learning Workspace Resources 4. Chapter 3: Azure Machine Learning Studio Components 5. Chapter 4: Configuring the Workspace 6. Section 2: No code data science experimentation
7. Chapter 5: Letting the Machines Do the Model Training 8. Chapter 6: Visual Model Training and Publishing 9. Section 3: Advanced data science tooling and capabilities
10. Chapter 7: The AzureML Python SDK 11. Chapter 8: Experimenting with Python Code 12. Chapter 9: Optimizing the ML Model 13. Chapter 10: Understanding Model Results 14. Chapter 11: Working with Pipelines 15. Chapter 12: Operationalizing Models with Code 16. Other Books You May Enjoy

Building the pipeline with the designer

In this section, we will create a training pipeline to train a machine learning model against the churn dataset you used in the previous chapter.

When you start designing a training pipeline, we recommend leveraging the 7 Steps of Machine Learning approach shown in the following diagram, which contains all the steps needed to create a machine learning model:

Figure 6.5 – 7 Steps of Machine Learning

This 7-step journey is a valuable checklist for real-life end-to-end scenarios to ensure you are not missing anything. In this journey, you will need various components, transformations, and models, which you can find in the asset library. To keep things simple, we will skip a couple of steps in the pipeline that you are going to design. In this section, you will start with a dataset that you will prepare to train a model. You will then evaluate the model and store it. In the next section, you will use that model...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image