Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Over 70 practical recipes for solving real-world computational math problems

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804618370
Length 376 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: An Introduction to Basic Packages, Functions, and Concepts 2. Chapter 2: Mathematical Plotting with Matplotlib FREE CHAPTER 3. Chapter 3: Calculus and Differential Equations 4. Chapter 4: Working with Randomness and Probability 5. Chapter 5: Working with Trees and Networks 6. Chapter 6: Working with Data and Statistics 7. Chapter 7: Using Regression and Forecasting 8. Chapter 8: Geometric Problems 9. Chapter 9: Finding Optimal Solutions 10. Chapter 10: Improving Your Productivity 11. Index 12. Other Books You May Enjoy

Modeling time series data with ARMA

Time series, as the name suggests, track a value over a sequence of distinct time intervals. They are particularly important in the finance industry, where stock values are tracked over time and used to make predictions – known as forecasting – of the value at some point in the future. Good predictions coming from this kind of data can be used to make better investments. Time series also appear in many other common situations, such as weather monitoring, medicine, and any places where data is derived from sensors over time.

Time series, unlike other types of data, do not usually have independent data points. This means that the methods that we use for modeling independent data will not be particularly effective. Thus, we need to use alternative techniques to model data with this property. There are two ways in which a value in a time series can depend on previous values. The first is where there is a direct relationship between the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime