Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Applied Supervised Learning with R

You're reading from   Applied Supervised Learning with R Use machine learning libraries of R to build models that solve business problems and predict future trends

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781838556334
Length 502 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jojo Moolayil Jojo Moolayil
Author Profile Icon Jojo Moolayil
Jojo Moolayil
Karthik Ramasubramanian Karthik Ramasubramanian
Author Profile Icon Karthik Ramasubramanian
Karthik Ramasubramanian
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Supervised Learning with R
Preface
1. R for Advanced Analytics FREE CHAPTER 2. Exploratory Analysis of Data 3. Introduction to Supervised Learning 4. Regression 5. Classification 6. Feature Selection and Dimensionality Reduction 7. Model Improvements 8. Model Deployment 9. Capstone Project - Based on Research Papers Appendix

Ridge Regression


As we saw in linear regression, Ordinary Least Square (OLS) estimates the value of in such a way that the sum of squares of residual is minimized.

Since is an estimate we compute from a given sample and it's not a true population parameter, we need to be careful of certain characteristics of an estimate. The two such primary characteristics are the bias and the variance.

If is the fit at the value of , then the average (or expected) on the test dataset could be decomposed into three quantities, the variance, the squared bias, and the variance of error terms as represented by the following equation:

For the best estimate, a suitable algorithm such as OLS should simultaneously achieve low bias and low variance. We commonly call this the Bias-Variance trade off. The popular bull's eye picture shown in the following figure helps understand the various scenarios of the tradeoff:

Figure 4.14: The popular bull's eye picture for explaining Bias and Variance scenarios

The bull's...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image