Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
15 Math Concepts Every Data Scientist Should Know
15 Math Concepts Every Data Scientist Should Know

15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms

eBook
€8.99 €26.99
Paperback
€33.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Colour book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

15 Math Concepts Every Data Scientist Should Know

Recap of Mathematical Notation and Terminology

Our tour of math concepts will start properly in Chapter 2. Before we begin that tour, we’ll start by recapping some mathematical notation and terminology. Mathematics is a language, and mathematical symbols and notation are its alphabet. Therefore, we must be comfortable with and understand the basics of this alphabet.

In this chapter, we will recap the most common core notation and terminology that we are likely to use repeatedly throughout the book. We have grouped the recap into six main math areas or topics. Those topics are as follows:

  • Number systems: In this section, we introduce notation for real and complex numbers
  • Linear algebra: In this section, we introduce notation for describing vectors and matrices
  • Sums, products, and logarithms: In this section, we introduce notation for succinctly representing sums and products, and we introduce rules for logarithms
  • Differential and integral calculus: In this...

Technical requirements

As this chapter solely recaps some of the mathematical notation we will use in later chapters, there are no code examples given and hence no technical requirements for this particular chapter.

For later chapters, you will be able to find code examples at the GitHub repository: https://github.com/PacktPublishing/15-Math-Concepts-Every-Data-Scientist-Should-Know

Number systems

In this section, we introduce notation for describing sets of numbers. We will focus on the real numbers and the complex numbers.

Notation for numbers and fields

As this is a book about data science, we will be dealing with numbers. So, it will be worthwhile recapping the notation we use to refer to the most common sets of numbers.

Most of the numbers we will deal with in this book will be real numbers, such as 4.6, 1, or -2.3. We can think of them as “living” on the real number line shown in Figure 1.1. The real number line is a one-dimensional continuous structure. There are an infinite number of real numbers. We denote the set of all real numbers by the symbol .

Figure 1.1: The real number line

Figure 1.1: The real number line

Obviously, there will be situations where we want to restrict our datasets to, say, just integer-valued numbers. This would be the case if we were analyzing count data, such as the number of items of a particular...

Linear algebra

In this section, we introduce notation to describe vectors and matrices, which are key mathematical objects that we will encounter again and again throughout this book.

Vectors

In many circumstances, we will want to represent a set of numbers together. For example, the numbers 7.3 and 1.2 might represent the values of two features that correspond to a data point in a training set. We often group these numbers together in brackets and write them as (7.3, 1.2) or [7.3, 1.2]. Because of the similarity to the way we write spatial coordinates, we tend to call a collection of numbers that are held together a vector. A vector can be two-dimensional, as in the example just given, or d-dimensional, meaning it contains d components, and so might look like <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math>.

We can write a vector in two ways. We can write it as a row vector, going across the page, such as the following vector:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfenced open="(" close=")"><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><msub><mi>x</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>x</mi><mi>d</mi></msub></mrow></mfenced><mo>=</mo><mtext>a</mtext></mrow></mrow></math> d-dimensional row vector

Eq. 8

Alternatively, we can write it as a column vector going...

Sums, products, and logarithms

In this section, we introduce notation for doing the most basic operations we can do with numbers, namely adding them together or multiplying them together. We’ll then introduce notation for working with logarithms.

Sums and the 𝚺 notation

When we want to add several numbers together, we can use the summation, or <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi mathvariant="normal">Σ</mml:mi></mml:math>, notation. For example, if we want to represent the addition of the numbers <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="normal">x</mml:mi></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msub></mml:math>, we use the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi mathvariant="normal">Σ</mml:mi></mml:math> notation to write this as follows:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mrow><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>i</mi><mo>=</mo><mn>5</mn></mrow></munderover><msub><mi>x</mi><mi>i</mi></msub></mrow></mrow></math>

Eq. 13

This notation is shorthand for writing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msub></mml:math>. This essentially defines what the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi mathvariant="normal">Σ</mml:mi></mml:math> notation represents – that is, the following:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mrow><mrow><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>i</mi><mo>=</mo><mn>5</mn></mrow></munderover><msub><mi>x</mi><mi>i</mi></msub></mrow><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><msub><mi>x</mi><mn>4</mn></msub><mo>+</mo><msub><mi>x</mi><mn>5</mn></msub></mrow></mrow></math>

Eq. 14

In the left-hand side (LHS) of Eq. 14, the integer indexing variable, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>i</mml:mi></mml:math>, takes the values between 1 (indicated beneath the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi mathvariant="normal">Σ</mml:mi></mml:math> symbol) and 5 (indicated above the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi mathvariant="normal">Σ</mml:mi></mml:math> symbol) and we interpret the LHS as “take all the numbers <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math> for the values of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>i</mml:mi></mml:math> indicated by the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi mathvariant="normal">Σ</mml:mi></mml:math> symbol and add them together.”

You may wonder whether the shorthand...

Differential and integral calculus

In this section, we won’t go into the fundamentals of differential calculus, but instead just recap some basic results and notation. Therefore, we are assuming you already have some basic familiarity with differentiation and integration.

Differentiation

Let’s start with what the derivative of a function or curve <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>y</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:math> intuitively represents. An example curve is shown in Figure 1.5. The derivative of this function is denoted by the following symbol:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow></math>

Eq. 29

The derivative of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>y</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:math> is itself a function of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math>. The numerical value of the derivative evaluated at a particular value of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math>, let’s say at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math>, is the gradient (or slope) of the tangent to the curve <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>y</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:math> at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math>. As such, we can think of the derivative as defining the local gradient value of the curve. This is illustrated in Figure 1.5 as well:

Figure 1.5: The derivative as the gradient of the tangent to the curve

Figure 1.5: The derivative as the gradient of the tangent to the curve

Sometimes, when we want to be explicit...

Analysis

In this section, we recap the notation that is used in analyzing and describing the behavior of functions. This includes notation for describing limits, notation for describing the relative ordering of functions, and notation for describing standard approximations of functions.

Limits

When we are talking about limits, we are talking about the mathematical behavior of some quantity, often a function, as some other quantity approaches a particular value, often infinity. Let’s make that more concrete. Consider the function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>f</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfrac></mml:math> . As <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math> gets bigger and bigger, then clearly, the value of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>f</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:math> gets smaller and smaller, until eventually, as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math> becomes infinitely large, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>f</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:math> becomes zero. We say that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>f</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:math> approaches its limit of 0 as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi></mml:math> approaches <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi mathvariant="normal">∞</mml:mi></mml:math>. Mathematically, we write this as follows:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mrow><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><mi>f</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></mrow></mrow></math>

Eq. 46

The word lim denotes the fact that we are talking about a limit, while the symbols <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>x</mml:mi><mml:mo>→</mml:mo><mml:mi mathvariant="normal">∞</mml:mi></mml:math> describe what limit we are talking about. The RHS of Eq. 46 gives the actual limiting value.

Sometimes...

Combinatorics

Our final section regards binomial coefficients. They are part of the mathematical field of combinatorics, but we will introduce them in the context of the binomial distribution, which we will meet multiple times in the book.

Binomial coefficients

Along with the normal or Gaussian distribution, the binomial distribution is one of the most common distributions we will encounter as data scientists. It is the distribution of the number of times, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>n</mml:mi></mml:math>, we observe a particular outcome in a set of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>N</mml:mi></mml:math> observations, where in each observation there are only two possibilities that can occur. Given we are interested only in the total number, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>n</mml:mi></mml:math>, of successful outcomes of a particular type, a large part of calculating the associated probability comes down to calculating how many ways we can distribute or arrange the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>n</mml:mi></mml:math> successes between the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>N</mml:mi></mml:math> observations. The answer is given by the binomial coefficient <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mfenced separators="|"><mml:mrow><mml:mfrac linethickness="0pt"><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:mfenced></mml:math>. This is defined mathematically as follows:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mrow><mfenced open="(" close=")"><mfrac><mi>N</mi><mi>n</mi></mfrac></mfenced><mo>=</mo><mfrac><mrow><mi>N</mi><mo>!</mo></mrow><mrow><mi>n</mi><mo>!</mo><mfenced open="(" close=")"><mrow><mi>N</mi><mo>−</mo><mi>n</mi></mrow></mfenced><mo>!</mo></mrow></mfrac></mrow></mrow></math>

Eq. 62

Here, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>n</mml:mi><mml:mo>!</mml:mo></mml:math> means <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>n</mml:mi></mml:math> factorial...

Summary

We have completed our brief recap of the main notation and terminology that we will need for our tour of math concepts in data science. We are now ready for that tour, so let’s begin.

In the next chapter, we will meet our first key math concept when we learn about random variables and probability distributions.

Notes and further reading

  1. An example of one of the more well-known “big book of integrals” is Table of Integrals, Series, and Products by I.S. Gradshteyn and I.M. Ryzhik, 8th Edition, Daniel Zwillinger (Editor), Academic Press (Cambridge, Massachusetts, USA), 2014. This is the book of integrals that I use.
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Understand key data science algorithms with Python-based examples
  • Increase the impact of your data science solutions by learning how to apply existing algorithms
  • Take your data science solutions to the next level by learning how to create new algorithms
  • Purchase of the print or Kindle book includes a free PDF eBook

Description

Data science combines the power of data with the rigor of scientific methodology, with mathematics providing the tools and frameworks for analysis, algorithm development, and deriving insights. As machine learning algorithms become increasingly complex, a solid grounding in math is crucial for data scientists. David Hoyle, with over 30 years of experience in statistical and mathematical modeling, brings unparalleled industrial expertise to this book, drawing from his work in building predictive models for the world's largest retailers. Encompassing 15 crucial concepts, this book covers a spectrum of mathematical techniques to help you understand a vast range of data science algorithms and applications. Starting with essential foundational concepts, such as random variables and probability distributions, you’ll learn why data varies, and explore matrices and linear algebra to transform that data. Building upon this foundation, the book spans general intermediate concepts, such as model complexity and network analysis, as well as advanced concepts such as kernel-based learning and information theory. Each concept is illustrated with Python code snippets demonstrating their practical application to solve problems. By the end of the book, you’ll have the confidence to apply key mathematical concepts to your data science challenges.

Who is this book for?

This book is for data scientists, machine learning engineers, and data analysts who already use data science tools and libraries but want to learn more about the underlying math. Whether you’re looking to build upon the math you already know, or need insights into when and how to adopt tools and libraries to your data science problem, this book is for you. Organized into essential, general, and selected concepts, this book is for both practitioners just starting out on their data science journey and experienced data scientists.

What you will learn

  • Master foundational concepts that underpin all data science applications
  • Use advanced techniques to elevate your data science proficiency
  • Apply data science concepts to solve real-world data science challenges
  • Implement the NumPy, SciPy, and scikit-learn concepts in Python
  • Build predictive machine learning models with mathematical concepts
  • Gain expertise in Bayesian non-parametric methods for advanced probabilistic modeling
  • Acquire mathematical skills tailored for time-series and network data types
Estimated delivery fee Deliver to Belgium

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 16, 2024
Length: 510 pages
Edition : 1st
Language : English
ISBN-13 : 9781837634187
Category :
Languages :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Colour book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Belgium

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Aug 16, 2024
Length: 510 pages
Edition : 1st
Language : English
ISBN-13 : 9781837634187
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 112.97
15 Math Concepts Every Data Scientist Should Know
€33.99
Python for Algorithmic Trading Cookbook
€44.99
Python Feature Engineering Cookbook
€33.99
Total 112.97 Stars icon
Banner background image

Table of Contents

20 Chapters
Part 1: Essential Concepts Chevron down icon Chevron up icon
Chapter 1: Recap of Mathematical Notation and Terminology Chevron down icon Chevron up icon
Chapter 2: Random Variables and Probability Distributions Chevron down icon Chevron up icon
Chapter 3: Matrices and Linear Algebra Chevron down icon Chevron up icon
Chapter 4: Loss Functions and Optimization Chevron down icon Chevron up icon
Chapter 5: Probabilistic Modeling Chevron down icon Chevron up icon
Part 2: Intermediate Concepts Chevron down icon Chevron up icon
Chapter 6: Time Series and Forecasting Chevron down icon Chevron up icon
Chapter 7: Hypothesis Testing Chevron down icon Chevron up icon
Chapter 8: Model Complexity Chevron down icon Chevron up icon
Chapter 9: Function Decomposition Chevron down icon Chevron up icon
Chapter 10: Network Analysis Chevron down icon Chevron up icon
Part 3: Selected Advanced Concepts Chevron down icon Chevron up icon
Chapter 11: Dynamical Systems Chevron down icon Chevron up icon
Chapter 12: Kernel Methods Chevron down icon Chevron up icon
Chapter 13: Information Theory Chevron down icon Chevron up icon
Chapter 14: Non-Parametric Bayesian Methods Chevron down icon Chevron up icon
Chapter 15: Random Matrices Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(6 Ratings)
5 star 83.3%
4 star 0%
3 star 0%
2 star 0%
1 star 16.7%
Filter icon Filter
Top Reviews

Filter reviews by




Pablo Cepeda Oct 26, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Nice book
Feefo Verified review Feefo
Amazon Customer Sep 22, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book is structured around 15 crucial concepts that form the bedrock of data science. From the very beginning, readers are introduced to foundational topics like random variables and probability distributions. Hoyle's clear explanations help readers grasp why data varies, setting a solid groundwork for the more complex ideas that follow. The transition into matrices and linear algebra is seamless, making complex mathematical concepts accessible even to those who may not have a strong math background.The progression from essential to advanced topics — such as kernel methods, information theory, and Bayesian non-parametric methods — is methodical and well-paced. The inclusion of topics like time series forecasting and network analysis further enriches the book, catering to a diverse range of interests within the data science community.Overall, this book is a significant contribution to the field of data science literature. It not only elucidates the mathematical principles that underpin various algorithms but also empowers readers to become more proficient in applying these concepts to real-world scenarios. For anyone serious about mastering data science, Hoyle’s work is a must-read, offering a blend of theory and practice that is sure to enhance your analytical capabilities.
Amazon Verified review Amazon
Gabriel Preda Sep 27, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
If you got here, you are planning probably to buy and read this book. Which will be an excellent idea, because is giving you the best value for money for this type of books. Let's see why the book structure, its content quality, the quality of printing, all are providing good reasons to do it.Structure: The book is structured in three parts, covering concepts gradually increasing in difficulty, from basic and introductory notions to intermediate and advanced. In the first part the basic principles in random numbers and probability distribution, matrices and linear algebra, loss functions, optimisation, probabilistic modeling are covered. In the second part, the book will tackle time series and forecasting, hypothesis testing, and model complexity, followed by function decomposition, and network analysis. In the last part, the more advanced topics of dynamical systems, kernel methods, information theory, non-parametric Bayesian methods and random matrices are covered.Content quality: The author is a former university professor and you can see that in the consistency of the material he included, as well as in the clear explanations of the notions, so that you can keep pace not only with the introductory chapters but also with the most advanced ones. The book is well documented, the notations are carefully edited, the narative is clear and easy to follow. This easiness to follow the content is supported by the author’s choice to add summaries, example, and further reading recommendations, depending on what is adequate in the specific case, to the end of each chapter. This helps the reader to crystallise his recently learned topics.Typography: When you read this book, you enjoy not only the quality of the content and the way that the author explains rather complex notions so that you can follow, but also the quality of the typography. A beautiful font (I read it on a paperback copy), with clear tables and beautifully rendered images, in color (which for a technical book, especially when graph are presented, is a very useful feature).Summary: An easy to read, well documented, highly recommended reference for those of you that takes seriously the Data Science specialisation. And an excellent introduction in the basic tools for the Data Scientist.
Amazon Verified review Amazon
Steven Fernandes Sep 12, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Title: Elevate Your Data Science Skills: A Comprehensive GuideReview:This book is a comprehensive toolkit for anyone looking to deepen their data science expertise. It covers foundational concepts and advanced techniques, using real-world challenges to illustrate the application of theories. Practical implementations using Python libraries like NumPy, SciPy, and sci-kit-learn are detailed, alongside guidance on building predictive models and mastering Bayesian methods. It’s especially valuable for those interested in time series and network data. A must-have for aspiring and seasoned data scientists alike.
Amazon Verified review Amazon
Sai Kumar Bysani Oct 18, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book encompasses a wide array of mathematical concepts essential for data science, including:1. 𝐑𝐚𝐧𝐝𝐨𝐦 𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 & 𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐬: Understanding the foundations of randomness and how different distributions impact data interpretation.2. 𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚: Key concepts like matrices and vectors that form the backbone of many algorithms used in machine learning and data analysis.3. 𝐋𝐨𝐬𝐬 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬 & 𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: Insight into how these elements are crucial for training models and making predictions.4. 𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐬𝐭𝐢𝐜 𝐌𝐨𝐝𝐞𝐥𝐢𝐧𝐠: Techniques for making inferences and predictions based on observed data.5. 𝐇𝐲𝐩𝐨𝐭𝐡𝐞𝐬𝐢𝐬 𝐓𝐞𝐬𝐭𝐢𝐧𝐠: A fundamental aspect of data science that helps in validating assumptions and claims based on data.6. 𝐓𝐢𝐦𝐞 𝐒𝐞𝐫𝐢𝐞𝐬 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬: Methods for analyzing data points collected or recorded at specific time intervals, essential for forecasting....and many more important math concepts!I like how the book combines theory with practical application, providing Python code snippets that help readers see how these concepts are applied in real-world scenarios. This practical focus makes the book particularly beneficial for those who learn best by doing.Whether you’re new to data science or looking to sharpen your skills, this book serves as a solid reference guide and a stepping stone to deeper understanding. It encourages readers to not only grasp the math but to apply it effectively in their data science projects.In conclusion, if you're looking to enhance your mathematical toolkit and elevate your data science skills, I highly recommend picking up this book. It’s a great addition to any data scientist’s library and a fantastic resource for professional growth.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela