Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Time Series Analysis with Python Cookbook

You're reading from   Time Series Analysis with Python Cookbook Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation

Arrow left icon
Product type Paperback
Published in Jun 2022
Publisher Packt
ISBN-13 9781801075541
Length 630 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tarek A. Atwan Tarek A. Atwan
Author Profile Icon Tarek A. Atwan
Tarek A. Atwan
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Chapter 1: Getting Started with Time Series Analysis 2. Chapter 2: Reading Time Series Data from Files FREE CHAPTER 3. Chapter 3: Reading Time Series Data from Databases 4. Chapter 4: Persisting Time Series Data to Files 5. Chapter 5: Persisting Time Series Data to Databases 6. Chapter 6: Working with Date and Time in Python 7. Chapter 7: Handling Missing Data 8. Chapter 8: Outlier Detection Using Statistical Methods 9. Chapter 9: Exploratory Data Analysis and Diagnosis 10. Chapter 10: Building Univariate Time Series Models Using Statistical Methods 11. Chapter 11: Additional Statistical Modeling Techniques for Time Series 12. Chapter 12: Forecasting Using Supervised Machine Learning 13. Chapter 13: Deep Learning for Time Series Forecasting 14. Chapter 14: Outlier Detection Using Unsupervised Machine Learning 15. Chapter 15: Advanced Techniques for Complex Time Series 16. Index 17. Other Books You May Enjoy

Detecting outliers using LOF

In the previous recipe, Detecting outliers using KNN, in the KNN algorithm, the decision scoring for detecting outliers was based on the distance between observations. A data point far from its KNN can be considered an outlier. Overall, the algorithm does a good job of capturing global outliers, but those far from the surrounding points may not do well with identifying local outliers.

This is where the LOF comes in to solve this limitation. Instead of using the distance between neighboring points, it uses density as a basis for scoring data points and detecting outliers. The LOF is considered a density-based algorithm. The idea behind the LOF is that outliers will be further from other data points and more isolated, and thus will be in low-density regions.

It is easier to illustrate this with an example: imagine a person standing in line in a small but busy Starbucks, and everyone is pretty much close to each other; then, we can say the person is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime