Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Machine Learning Workshop

You're reading from   The Machine Learning Workshop Get ready to develop your own high-performance machine learning algorithms with scikit-learn

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781839219061
Length 286 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Hyatt Saleh Hyatt Saleh
Author Profile Icon Hyatt Saleh
Hyatt Saleh
Arrow right icon
View More author details
Toc

Summary

This chapter wraps up all of the concepts and techniques that are required to successfully train a machine learning model based on training data. In this chapter, we introduced the idea of building a comprehensive machine learning program that not only accounts for the stages involved in the preparation of the dataset and creation of the ideal model, but also the stage related to making the model accessible for future use, which is accomplished by carrying out three main processes: saving the model, loading the model, and creating a channel that allows users to easily interact with the model and obtain an outcome.

For saving and loading a model, the pickle module was introduced. This module is capable of serializing the model to save it in a file, while also being capable of deserializing it to make use of the model in the future.

Furthermore, to make the model accessible to users, the ideal channel (for example, an API, an application, a website, or a form) needs to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime