Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Reinforcement Learning Quick Start Guide

You're reading from   TensorFlow Reinforcement Learning Quick Start Guide Get up and running with training and deploying intelligent, self-learning agents using Python

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789533583
Length 184 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kaushik Balakrishnan Kaushik Balakrishnan
Author Profile Icon Kaushik Balakrishnan
Kaushik Balakrishnan
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Up and Running with Reinforcement Learning 2. Temporal Difference, SARSA, and Q-Learning FREE CHAPTER 3. Deep Q-Network 4. Double DQN, Dueling Architectures, and Rainbow 5. Deep Deterministic Policy Gradient 6. Asynchronous Methods - A3C and A2C 7. Trust Region Policy Optimization and Proximal Policy Optimization 8. Deep RL Applied to Autonomous Driving 9. Assessment 10. Other Books You May Enjoy

Up and Running with Reinforcement Learning

This book will cover interesting topics in deep Reinforcement Learning (RL), including the more widely used algorithms, and will also provide TensorFlow code to solve many challenging problems using deep RL algorithms. Some basic knowledge of RL will help you pick up the advanced topics covered in this book, but the topics will be explained in a simple language that machine learning practitioners can grasp. The language of choice for this book is Python, and the deep learning framework used is TensorFlow, and we expect you to have a reasonable understanding of the two. If not, there are several Packt books that cover these topics. We will cover several different RL algorithms, such as Deep Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO), to name a few. Let's dive right into deep RL.

In this chapter, we will delve deep into the basic concepts of RL. We will learn the meaning of the RL jargon, the mathematical relationships between them, and also how to use them in an RL setting to train an agent. These concepts will lay the foundations for us to learn RL algorithms in later chapters, along with how to apply them to train agents. Happy learning!

Some of the main topics that will be covered in this chapter are as follows:

  • Formulating the RL problem
  • Understanding what an agent and an environment are
  • Defining the Bellman equation
  • On-policy versus off-policy learning
  • Model-free versus model-based training
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime