Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 2.0 Quick Start Guide

You're reading from   TensorFlow 2.0 Quick Start Guide Get up to speed with the newly introduced features of TensorFlow 2.0

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789530759
Length 196 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tony Holdroyd Tony Holdroyd
Author Profile Icon Tony Holdroyd
Tony Holdroyd
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to TensorFlow 2.00 Alpha
2. Introducing TensorFlow 2 FREE CHAPTER 3. Keras, a High-Level API for TensorFlow 2 4. ANN Technologies Using TensorFlow 2 5. Section 2: Supervised and Unsupervised Learning in TensorFlow 2.00 Alpha
6. Supervised Machine Learning Using TensorFlow 2 7. Unsupervised Learning Using TensorFlow 2 8. Section 3: Neural Network Applications of TensorFlow 2.00 Alpha
9. Recognizing Images with TensorFlow 2 10. Neural Style Transfer Using TensorFlow 2 11. Recurrent Neural Networks Using TensorFlow 2 12. TensorFlow Estimators and TensorFlow Hub 13. Converting from tf1.12 to tf2
14. Other Books You May Enjoy

What this book covers

Chapter 1, Introducing TensorFlow 2, introduces TensorFlow by looking at a number of snippets of code, illustrating some basic operations. We will have an overview of the modern TensorFlow ecosystem and will see how to install TensorFlow.

Chapter 2, Keras, a High-Level API for TensorFlow 2, takes a look at the Keras API, including some general comments and insights, followed by a basic architecture expressed in four different ways, for training with the MNIST dataset.

Chapter 3, ANN Technologies Using TensorFlow 2, examines a number of technologies that support the creation and use of neural networks. This chapter will cover data presentation to an ANN, layers of an ANN, creating the model, gradient calculations for gradient descent algorithms, loss functions, and saving and restoring models.

Chapter 4, Supervised Machine Learning Using TensorFlow 2, describes examples of the use of TensorFlow for two situations involving linear regression where features are mapped to known labels that have continuous values, allowing predictions on unseen features to be made.

Chapter 5, Unsupervised Learning Using TensorFlow 2, looks at two applications of autoencoders in unsupervised learning: firstly for compressing data; and secondly, for denoising, in other words, removing noise from images.

Chapter 6, Recognizing Images with TensorFlow 2, firstly looks at the Google Quick Draw 1 image dataset, and secondly, at the CIFAR 10 image dataset.

Chapter 7, Neural Style Transfer Using TensorFlow 2, explains how to take a content image and a style image and then produce a hybrid image. We will use layers from the trained VGG19 model to accomplish this.

Chapter 8, Recurrent Neural Networks Using TensorFlow 2, initially discusses the general principles of RNNs and then looks at how to acquire and prepare some text for use by a model.

Chapter 9, TensorFlow Estimators and TensorFlow Hub, firstly looks at an estimator for training the fashion dataset. We will see how estimators provide a simple, intuitive API for TensorFlow. We will also look at a neural network for analyzing the film feedback database, IMDb.

Appendix, Converting from tf1.12 to tf2, contains some tips for converting your tf1.12 files to tf2.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime