Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Serverless Analytics with Amazon Athena

You're reading from   Serverless Analytics with Amazon Athena Query structured, unstructured, or semi-structured data in seconds without setting up any infrastructure

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781800562349
Length 438 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Aaron Wishnick Aaron Wishnick
Author Profile Icon Aaron Wishnick
Aaron Wishnick
Mert Turkay Hocanin Mert Turkay Hocanin
Author Profile Icon Mert Turkay Hocanin
Mert Turkay Hocanin
Anthony Virtuoso Anthony Virtuoso
Author Profile Icon Anthony Virtuoso
Anthony Virtuoso
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Fundamentals Of Amazon Athena
2. Chapter 1: Your First Query FREE CHAPTER 3. Chapter 2: Introduction to Amazon Athena 4. Chapter 3: Key Features, Query Types, and Functions 5. Section 2: Building and Connecting to Your Data Lake
6. Chapter 4: Metastores, Data Sources, and Data Lakes 7. Chapter 5: Securing Your Data 8. Chapter 6: AWS Glue and AWS Lake Formation 9. Section 3: Using Amazon Athena
10. Chapter 7: Ad Hoc Analytics 11. Chapter 8: Querying Unstructured and Semi-Structured Data 12. Chapter 9: Serverless ETL Pipelines 13. Chapter 10: Building Applications with Amazon Athena 14. Chapter 11: Operational Excellence – Monitoring, Optimization, and Troubleshooting 15. Section 4: Advanced Topics
16. Chapter 12: Athena Query Federation 17. Chapter 13: Athena UDFs and ML 18. Chapter 14: Lake Formation – Advanced Topics 19. Other Books You May Enjoy

Chapter 9: Serverless ETL Pipelines

In the previous chapter, you learned how to tame unstructured or loosely structured data using Athena to manipulate logs, JavaScript Object Notation (JSON), and other types of machine-generated data. In this chapter, we'll continue with the theme of controlling chaos by using automation to normalize newly arrived data through a process known as extract, transform, load (ETL). We start with a brief explanation of ETL, and once we've established a basic understanding of ETL processes, we will move on to best practices and common pitfalls of using Athena for ETL.

As with most of the chapters in this book, we'll then get hands-on by designing and implementing a serverless ETL pipeline. More precisely, we'll implement the serverless ETL pipeline discussed in Chapter 2, Introduction to Amazon Athena. In that chapter, we described a fictional hedge fund with a propensity for trading widely shorted meme stocks. Their equally fictional...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime